• Title/Summary/Keyword: pumping-current

Search Result 187, Processing Time 0.029 seconds

Analysis of the Driving Characteristics in the Magnetic Fluid Linear Pump by Operating Current (동작 전류에 의한 Magnetic fluid Linear Pump의 동특성 해석)

  • Seo, Kang;Park, Gwan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • The advantages of the Magnetic Fluid Linear Pump(MFLP) is that this device could Pump the non-conductive. non-magnetic liquid such as Insulin or blood because of the segregation structure of the magnetic fluid and pumping liquid. In this device. the sequential currents are needed to Produce pumping forces so that Pumping Forces and Pumping speed mainly depend on the current Patterns. The excessive forces at Pumping moment could cause the medical shock, and weak forces at intermediate moment could cause the back flow or the pumping liquid. So the ripples of the pumping forces need to be reduced for the medical application. In this research, the driving characteristics in the MFLP by operating current is analysed. The change of magnetic fluid surface according to the driving currents could be obtained be magneto-hydrodynamic analysis so that Pumping fortes could be computed by integration of the surface moving to the pumping direction at each moment. The actual MFLP with 13mm diameter was made and tested for experiments. The effects of driving current and frequency on the pumping forces and pumping speed were analyzed and compared with experimental measurements.

Analysis of Charging Characteristics of Linear Type Magnetic Flux Pump Depended on Traveling Speed of Magnetic Field (리니어형 자속펌프의 이동자장 속도에 따른 충전전류 특성 해석)

  • Chung, Yoon-Do;Kim, Hyun-Ki;Bae, Duck-Kweon;Yoon, Yong-Soo;Jo, Hyun-Chul;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • We already obtained magnetic behavior of superconducting Nb foil of linear type magnetic flux pump (LTMFP) by means of the FEM analysis. As well as, fundamental equations of pumping current were theoretically derived based on the pumping sequences according to the position of normal spot of the moving flux. In this paper, we experimentally investigated pumping performances of LTMFP with a wide range of traveling speed of magnetic field. In order to confirm the numerical and theoretical approaches, we explained the pumping characteristics of LTMFP by use of the calculation sequence of pumping current.

Theoretical Analysis of Charging Current of Linear Type Magnetic Flux Pump According to the Penetrated Position and Moving Speed of Magnetic Flux (침투자속의 위치와 이동속도에 따른 리니어형 자속펌프 충전전류의 이론적 해석)

  • Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • We proposed a linear type magnetic flux pump (LTMFP) as a power supply for superconducting magnet system. In order to explain the operating mechanism of pumping action, the pumping sequence based on penetrated position and moving speed of magnetic flux on the superconducting Nb foil should be understood. In this paper, we induced a theoretical equation for pumping current of LTMFP according to the position of normal spot and corresponding equivalent circuit. In addition, current charging tendencies under the intensity of magnetic flux and frequency were described based on the theoretical pumping equation.

Study of the Driving Characteristics in the Magnetic Fluid Linear Pump by AC Operating Currents (Magnetic Fluid Linear Pump의 AC 전류에 의한 운전 특성에 관한 연구)

  • Park Gwan Soo;Seo Kang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • In the magnetic fluid linear pump, the pumping forces and pumping speed mainly depend on the current patterns. In this research, a new design to reduce the discontinuities of the pumping forces of the MFLP was studied. Continuous pumping of the newly designed MFLP by using AC current increases pumping efficiency and reduces the pumping force. Forming shapes of the magnetic fluid at the intermediate state were computed and compared to measurement. Since the back flow of the fluid is reduced remarkably, 4 yoke's AC driving is more efficient than 7 yoke's DC driving. The size, weight and pumping discontinuity are also reduced.

Effect of Distilled Water Supply Method on Performance of PEMWE Typed Hydrogen Generators for Inhalation (흡입용 PEMWE형 수소 발생기에서 증류수 공급 방법이 성능에 미치는 영향)

  • In-Soo, You;Hyunwoo, Bae;Joon Hyun, Kim;Jaeyong, Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.117-127
    • /
    • 2022
  • The present study has investigated the performance of hydrogen gas generators for inhalation purposes based on polyelectrolyte membrane water electrolysis (PEMWE). The system applied two watering methods. One is pumped water (pumping system) and the other is gravity-fed water without a pump (non-pumping system). The cell efficiencies were compared by measuring the cell voltage and temperature in the hydrogen gas generator, respectively. The results show that the cell voltage and temperature increase with the cell current. The cell temperature is lower in the pumping system than that in the non-pumping system at a given cell current. Even though the amount of hydrogen production is the same regardless of the pumping system, the cell efficiency of the hydrogen gas generator in the non-pumping system is better than that in the pumping system.

Analysis of the Operational Characteristic of a High-Tc Superconducting Power Supply for Charging of the Superconducting Magnet (초전도자석 충전용 고온초전도전원장치의 특성해석)

  • Yun, Yong-Su;Kim, Ho-Min;An, Min-Cheol;Bae, Deok-Gwon;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.4
    • /
    • pp.159-164
    • /
    • 2002
  • This paper presents the design and fabrication of a high-Tc superconducting (HTS) power supply for charging of the HTS magnet load, and its characteristics have been analyzed through experiments. HTS power supply consists of two heaters, an electromagnet, a Bi-2223 solenoid and a Bi-2223 pancake magnet load. In this experiment, 331 mH electromagnet and 0.8 A dc heater current were used, and 8.5 sec and 17 sec were used for pumping period. Mechanism of the superconducting switch is used for heater-trigger. In order to measure the pumping-current with respect to the magnet flux changes, hall sensor was installed at the center of the Bi-2223 pancake load. The experimental observations have been compared with the theoretical predictions. In this experiment, the pumping-current has reached about 1.2 A. In computer simulation, the maximum pumping-current of the system has been predicted to be about 2.7 A.

Charge Pumping Measurements Optimized in Nonvolatile Polysilicon Thin-film Transistor Memory

  • Lee, Dong-Myeong;An, Ho-Myeong;Seo, Yu-Jeong;Kim, Hui-Dong;Song, Min-Yeong;Jo, Won-Ju;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.331-331
    • /
    • 2012
  • With the NAND Flash scaling down, it becomes more and more difficult to follow Moore's law to continue the scaling due to physical limitations. Recently, three-dimensional (3D) flash memories have introduced as an ideal solution for ultra-high-density data storage. In 3D flash memory, as the process reason, we need to use poly-Si TFTs instead of conventional transistors. So, after combining charge trap flash (CTF) structure and poly-Si TFTs, the emerging device SONOS-TFTs has also suffered from some reliability problem such as hot carrier degradation, charge-trapping-induced parasitic capacitance and resistance which both create interface traps. Charge pumping method is a useful tool to investigate the degradation phenomenon related to interface trap creation. However, the curves for charge pumping current in SONOS TFTs were far from ideal, which previously due to the fabrication process or some unknown traps. It needs an optimization and the important geometrical effect should be eliminated. In spite of its importance, it is still not deeply studied. In our work, base-level sweep model was applied in SONOS TFTs, and the nonideal charge pumping current was optimized by adjusting the gate pulse transition time. As a result, after the optimizing, an improved charge pumping current curve is obtained.

  • PDF

A Study on the Heater-Triggered Switching System for Charging of a HTS Magnet (고온초전도자석 충전용 히터트리거 스위칭 시스템에 관한 연구)

  • 배덕권;안민철;최석진;김영식;김호민;이찬주;윤용수;이상진;신철기
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.76-79
    • /
    • 2001
  • The heater-triggered switching system for charging of a high temperature superconductor(HTS) is prepared by simulation and investigated its characteristic by experiment. heater-triggered switching system consists of two nickel-chrome alloy heater, an electromagnet and YBCO bulk HTS. There are three important parameters to generate the pumping-current in this system. The timing sequential control of two heters and electromagnet is an important factor to generate pumping-current in the YBCO bulk HTS. Thermal analysis of the switching part in YBCO bulk HTS according to the heater input current was carried out. Electromagnet of 0.6[T] and DC heater input current of 2.3[A] were optimally derived. In this experiment, the maximum pumping current is reaches about 12[A].

  • PDF

Generation of valley polarized current in graphene using quantum adiabatic pumping

  • Wang, Jing;Chan, K.S.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • We study a device structure which can be used to generate pure valley current and valley polarized current using quantum adiabatic pumping. The design of the structure allows the flexibility of changing the structure from one for pure valley current generation to one for valley polarized current generation by changing the applied electric potentials through changing the symmetry of the structure. The device is useful for the development of valleytronic devices.

The Fabrication and Characteristic Experiment of a Heater-Trigger type High-Tc Superconducting Power Supply (히터트리거를 이용한 고온초전도전원장치의 제작 및 특성 실험에 관한 연구)

  • Yoon, Yong-Soo;Kim, Ho-Min;Chu, Yong;Lee, Chang-Yul;Ko, Tae-Kuk;Han, Tae-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.484-489
    • /
    • 1999
  • This paper deals with the design and fabrication of a heater-trigger type high-Tc superconducting power supply system, and characteristics have been analyzed through experiments. The high-Tc superconducting power supply consists of two heater trigger and electric magnet, and YBCO superconducting bulk. In this experiment, 0.6T class magnet and dc 2.3A heater current are used, and the current-pumping characteristics have been analyzed with computer aided sequence control system. Hall sensors are installed on the YBCO bulk and in the center of iron core in order to analyze the effect of the flux-pumping on the system with when magnet flux changes its value. In this experiment, maximum pumping-current has been achieved to about 6.6 amps.

  • PDF