• Title/Summary/Keyword: pumping effect

Search Result 287, Processing Time 0.028 seconds

Preliminary Assessment of Groundwater Artificial Recharge Effect Using a Numerical Model at a Small Basin (수치모델을 이용한 소분지에서의 지하수 인공함양 효과 예비 평가)

  • Choi, Myoung-Rak;Cha, Jang-Hwan;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2020
  • In this study, the effects of groundwater artificial recharge through vertical wells in the upper small basin are preliminarily evaluated by using field injection test and a 3-D numerical model. The injection rate per well in a model is set to 20, 37.5, 60, and 75 ㎥/day based on the results of field injection test, groundwater levels, and hydraulic conductivities estimated from particle size analysis, and a numerical model using MODFLOW is conducted for 28 cases, which have diverse injection intervals, in order to estimated the changes of groundwater level and water balance after injection. Groundwater level after injection does not show a linear relationship with the injection rate per well, and the cumulative effect of artificial recharge decreases and the timing of maximum water level rise is shortened as the injection interval becomes longer. In four cases of continuous injection with total injection rate of 1,200 ㎥, it is revealed that the recharge effect is analyzed as 36.5~65.3% of the original injection rate. However, it will be more effective if the artificial recharge system combined with underground barrier is introduced for the longer pumping during a long and severe drought. Additionally, it will be possible to build a stable artificial recharge system by an establishment of efficient scenario from recharge to pumping as well as an optimization of recharge facilities.

Selecting Aquifer Artificial Recharge Methods Based on Characteristics of the Target Aquifer (주입대상 대수층의 특성을 고려한 인공함양 방법 선정 연구)

  • Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.483-494
    • /
    • 2019
  • This study aimed to determine the extent of artificial aquifer recharge and to evaluate appropriate recharge techniques based on field investigations and comparative analysis of each recharge method. Characteristics of the aquifer determine the target aquifer and the recharge method for artificial groundwater recharge. Electrical conductivity surveys, drilling, permeability tests, and grain-size analysis indicate that the hydraulic conductivity of weathered soil and weathered rock is higher than that of upper unconsolidated soil. Pumping tests indicate that the groundwater level was stable at a depth of 12 m until 9 hours of pumping, but after that it dropped again, indicating anisotropic aquifer characteristics. Three types of artificial recharge method were reviewed, including recharge wells, ditches, and ponds, and a combination of two methods is proposed: a recharge well system directly injecting into weathered soil and rock sections with good permeability, and an injection ditch that can increase the recharge effect by line-type injection in the upstream area. The extent of groundwater recharge by the selected methods will be evaluated through on-site tests and if their applicability is verified, they will contribute to securing water in areas of water shortage.

DIFFERENTIAL DIAGNOSIS BY JOINT CAVITY PUMPING WITH LOCAL ANESTHETIC FOR PAIN OF TEMPOROMANDIBULAR JOINT ARTHROSIS (악관절증의 동통에 대한 국소마취제의 관절강내 Pumping에 의한 감별법)

  • Chung, Hoon;Jung, Hak;Kino, Koji
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.14 no.1_2
    • /
    • pp.146-153
    • /
    • 1992
  • In the outpatient clinic, we have many patients who suffer from temporomandibular joint disorders. These vary from MPD syndrome to osteoarthrosis, and many cases have tender spots or areas on the temporomandibular joint region and/or masticatory muscles. Further, they frequently have masticatory muscle pain when opening the jaw. This paper presents the results of our research on the differential diagnosis for tendernesses and pain on opening the jaw in the temporomandibular joint region and the masticatory muscles by joint cavity pumping with local anesthestic. The areas of tenderness and jae-opening paw in 65 patient suffering from temporomandibular joint disorder were examined and recorded before and after anesthetizing the upper joint cavity with 2% lidocaine. Maximum interincisal distance was similarly recorded. The results were as follows : In the area surrounding the upper joint cavity including the lateral pterygoid muscle, the tenderness and jaw-opening pain vanished almost entirely after anesthesia. This was considered a direct infiltrative effect of the local anesthesia. After the anesthesia, 86% of the tendernesses on the sternocleidomastoid muscles, and 66% of those on the posterior belly of the diagstric muscles vanished, while the disappearance rates on the masseter, temporal, and medial pterygoid muscles were 50~60%. Apart from the temporomandibular region, pain on opening the jaw was found on the masseter, temporal, posterior belly of the digastric muscles, and medial pterygoid muscles before anesthesia. The disappearance rates after anesthesia were 90~100% except for the pain of the posterior belly of the digastric muscles, for which the rate was 66%. These results suggest that more than 88% of the tendernesses on the sternocleidomastoid muscle, more than 60% of the tendernesses and jaw-opening pains on the digastric muscle, and more than half of the tendernesses and almost all of the jaw-opening pains in the jaw-closing muscles are referred pains from the temporomandibular joint. The tendernesses that had no change after anesthesia were considered to be derived from spasms of the muscles proper. Generally, maximum interincisal distance increased after anesthesia. The average distance was 34mm before anesthesia, but increased to 41mm after anesthesia. In a few cases, however little or no change was found in those distances. In these cases, pathological changes were found in the joint cavities arthrographically or arthroscopically.

  • PDF

MAGNETIC HELICITY PUMPING BY TWISTED FLUX TUBE EXPANSION

  • CHAE JONGCHUL;MOON Y.-J.;RUST D. M.;WANG HAIMIN;GOODE PHILIP R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Recent observations have shown that coronal magnetic fields in the northern (southern) hemisphere tend to have negative (positive) magnetic helicity. There has been controversy as to whether this hemispheric pattern is of surface or sub-surface origin. A number of studies have focused on clarifying the effect of the surface differential rotation on the change of magnetic helicity in the corona. Meanwhile, recent observational studies reported the existence of transient shear flows in active regions that can feed magnetic helicity to the corona at a much higher rate than the differential rotation does. Here we propose that such transient shear flows may be driven by the torque produced by either the axial or radial expansion of the coronal segment of a twisted flux tube that is rooted deeply below the surface. We have derived a simple relation between the coronal expansion parameter and the amount of helicity transferred via shear flows. To demonstrate our proposition, we have inspected Yohkoh soft X-ray images of NOAA 8668 in which strong shear flows were observed. As a result, we found that the expansion of magnetic fields really took place in the corona while transient shear flows were observed in the photosphere, and the amount of magnetic helicity change due to the transient shear flows is quantitatively consistent with the observed expansion of coronal magnetic fields. The transient shear flows hence may be understood as an observable manifestation of the pumping of magnetic helicity out of the interior portions of the field lines driven by the expansion of coronal parts as was originally proposed by Parker (1974).

Optimization of Ballast Depth of Ballasted Track Bridges to Improve Ride Comfort (승차감 향상을 위한 유도상교량의 도상두께 최적화)

  • Kim, Kwan-Hyung;Kwon, Soon-Jung;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.867-874
    • /
    • 2011
  • The ballast abrasion occurs on the ballasted track upon bridges more than soil roadbed because the track vibration occurs a lot in the ballasted track upon bridges due to girder vibration when a train's weight is loaded onto track even though the identical ballast is used. The phenomena of mud pumping especially, which occurs when drainage is not properly secured for heavy rain, leads to the increase of maintenance work load and the decline of ride comfort. The ballast thickness range in domestic railroad construction rule is uniformly set up according to the design speed of railroad and passing tonnage of train without considering field conditions which is considered in foreign railroad companies. The purpose of this study is to verify the effect of vibration decrease by measuring the acceleration, displacement and ride comfort of ballasted track with the change of ballast thickness on the ballast tracked bridges and to suggest the optimal height of ballast on the Yocheon Bridge built for the test in Honam Line.

Application of Cardiac Electromechanical FE Model for Predicting Pumping Efficacy of LVAD According to Heart Failure Severity (심부전 정도에 따른 좌심실보조장치의 박동효율예측을 위한 심장의 전기역학적 유한요소 모델의 응용)

  • Jung, Dae Hyun;Lim, Ki Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.715-720
    • /
    • 2014
  • In order to maximize the effect of left ventricular assist device (LVAD) on ventricular unloading, the therapy should be begun at appropriate level of heart failure severity. We predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used 3 dimensional finite element model of ventricle coupled with 6 Wind-kessel compartmental model of vascular system. Using the computational model, we predicted cardiac responses such as contractile ATP consumption of ventricle, left ventricular pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous LVAD. Contractile ATP consumption, which indicates the ventricular energetic loading condition decreased maximally at the $5^{th}$ level heart-failure under LVAD therapy. We conclude that optimal timing for LVAD treatment is $5^{th}$ level heart-failure when considering LVAD treatment as "bridge to recovery".

Groundwater Flow Modeling for a Finite Unconfined Sandy Aquifer in a Laboratory Scale (사질 자유면 대수층 모형에서의 지하수 모델링)

  • 이승섭;김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.188-193
    • /
    • 1999
  • Transport of pollutants in aquifer largely depends on groundwater flow which is governed by aquifer hydraulic parameters. Determination of these parameters and associated groundwater modeling become essential for adequate remediation of contaminate groundwater. The objective of this paper is to analyze groundwater flow and determine the optimum hydraulic parameters by performing groundwater modeling based on sensitivity analysis for unconfined sandy gavel aquifer constructed in a laboratory scale under various boundary condition. Results revealed that the simulated drawdown was lower than the observed drawdown irrespective of boundary conditions. and specific yield (S$_{y}$) had less effect on the grondwater flow than permeability (K) in the aquifer. Water balance analysis showed that the measured drawdown in neighboring observation wells during pumping was higher than either simulated or recovered water table. The indicated that a difference might exist in the water tables between aquifer and wells. The difference was investigated by time domain reflectometry (TDR) measurements on water contents in the region of water table and capillary fringe, and explained by a delayed response of water table during gravitational drainage as the water table was lowered as a result of pumping.g.

  • PDF

Numerical Study of Agitation Performance in a Drilling Mud Mixing Tank to Non-Newtonian Rheological Properties (시추용 머드혼합탱크의 비뉴턴 유체 모델에 대한 교반성능의 수치해석적 연구)

  • Im, Hyo-Nam;Lee, Hee-Woong;Lee, In-Su;Choi, Jae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.29-37
    • /
    • 2014
  • Non-Newtonian fluid mechanics takes charge of an important role in the oil industries. Especially in the oil well drilling process, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. The purpose of this study is to examine the effect of fluid mud rheological properties to predict different characteristics of non-Newtonian fluid in the mud mixing tank on offshore drilling platforms. In this paper, ANSYS fluent package was used for the simulation to solve the hydrodynamic force and to evaluate mud mixing time. Prediction of the power consumption and the pumping effectiveness has been presented with different operating fluid models as Newtonian and non-Newtonian fluid. The comparison between Newtonain mud model and non-Newtonian mud model is confirmed by the CFD simulation method of drilling mud mixing tank. The results present useful information for the design of the drilling mud mixing tanks and provide some guidance on the use of CFD tool for such non-Newtonian fluid flow.

Establishment of the Measurement System of the Magnetic Field for the Study on the Magnetic Field Tolerance of TMP

  • Baik, Kyungmin;Cheung, Wan-Sup;Lim, Jong-Yeon;Choi, Kyoung-Min;Nam, Seung-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.106.1-106.1
    • /
    • 2013
  • When strong static magnetic field is applied to the TMP, it is expected that the presence of the magnetic field might retard the velocity of the blades which results in the change of the pumping speed of the TMP. However, such effect of the magnetic field on the TMP has not been well characterized. Thus, under the strong magnetic field, monitoring pumping speed as well as generated heat, pressure, and vibration of the TMP may be an important issue to understand the magnetic field tolerance of the TMP and the development of magnetic shielding technique for the key components of the pump. For this purpose, magnetic field generation system to the vertical direction by a circular current source was firstly designed and suggested [K. Baik et al., 44th Annual Conf. KVS, 22(1), 153, (2012)]. In the current study, another magnetic field generation systems are presented to apply the magnetic field to the horizontal and radial directions by the rectangular current sources and the permanent magnets respectively. Such systems were made to generate at least 50 Gauss of magnetic field along the vertical direction and at least 25 Gauss of magnetic field along the horizontal or radial direction. Current study introduces the evaluation system of the magnetic field along the vertical, horizontal, and radial directions and presents the measured experimental results of the magnetic field when such systems are combined with the equipment where TMP will be installed.

  • PDF

An Exprimental Study on the Heat Transfer Performance in a Fluidized Bed Double Pipe Heat Exchanger (수직이중관식(垂直二重管式) 유동층형(流動層形) 열교환기(熱交換器)의 전열성능(傳熱性能)에 관한 실험적(實驗的) 연구(硏究))

  • Yoo, Ji-Oh;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.39-50
    • /
    • 1994
  • Experiments have been conducted to measure the heat transfer coefficient and pressure drop in fluidized bed double pope heat exchangers with smooth tube and longitudinal finned tube. The effect of particle size(alumina beads; do=0.41, 0.54, 0.65, 0.77 mm) and static bed height on the heat transfer coefficient has been evaluated in terms of pumping power. The heat transfer coefficient for the smooth tube and finned tube heat exchangers has been compared with single phase double pipe heat exchanger. Results show that the heat transfer coefficients for the finned tube in $2.96{\sim}3.45$ times higher than the smooth tube. The heat transfer coefficients for the fluidized bed heat exchanger is higher than the single phase heat exchanger for the most of pumping power range tested. The maximum increase in the heat transfer coefficient for fluidized bed is 91.3% for the smooth tube and 127.1% for the finned tube.

  • PDF