Browse > Article
http://dx.doi.org/10.9720/kseg.2020.3.269

Preliminary Assessment of Groundwater Artificial Recharge Effect Using a Numerical Model at a Small Basin  

Choi, Myoung-Rak (Department of Disaster Prevention, Graduate School of Daejeon University)
Cha, Jang-Hwan (Fusion Research Institute, Sinwoo Engineering Co., Ltd.)
Kim, Gyoo-Bum (Department of Construction Safety and Disaster Prevention, Daejeon University)
Publication Information
The Journal of Engineering Geology / v.30, no.3, 2020 , pp. 269-278 More about this Journal
Abstract
In this study, the effects of groundwater artificial recharge through vertical wells in the upper small basin are preliminarily evaluated by using field injection test and a 3-D numerical model. The injection rate per well in a model is set to 20, 37.5, 60, and 75 ㎥/day based on the results of field injection test, groundwater levels, and hydraulic conductivities estimated from particle size analysis, and a numerical model using MODFLOW is conducted for 28 cases, which have diverse injection intervals, in order to estimated the changes of groundwater level and water balance after injection. Groundwater level after injection does not show a linear relationship with the injection rate per well, and the cumulative effect of artificial recharge decreases and the timing of maximum water level rise is shortened as the injection interval becomes longer. In four cases of continuous injection with total injection rate of 1,200 ㎥, it is revealed that the recharge effect is analyzed as 36.5~65.3% of the original injection rate. However, it will be more effective if the artificial recharge system combined with underground barrier is introduced for the longer pumping during a long and severe drought. Additionally, it will be possible to build a stable artificial recharge system by an establishment of efficient scenario from recharge to pumping as well as an optimization of recharge facilities.
Keywords
artificial recharge; numerical model; injection well; recharge effect;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Chang, S., Chung, I.M., Kim, Y., Moon, S.H., 2016, Long-term groundwater budget analysis based on integrated hydrological model for water curtain cultivation site: Case study of Cheongweon, Korea, Journal of the Geological Society of Korea, 52(3), 201-210 (in Korean with English abstract).   DOI
2 CNI (ChungNam Institute), 2016, Drop analysis according to climate change scenario in Chungcheongnam-do, Strategic Research 2016-34, 71p.
3 Dupuit, J., 1863, Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables, 2eme edition; Dunot, Paris.
4 Hamm, S.Y., Cheong, J.Y., Kim, H.S., Hahn, J.S., Cha, Y.H., 2005, Groundwater flow modeling in a riverbank filtration area, Deasan-Myeon, Changwon city, Economic and Environmental Geology, 38(1), 67-78 (in Korean with English abstract).
5 KEITI (Korea Environmental Industry & Technology Institute), 2019, Demand response supply service program, IoT-based artificial cultivation and well network technology development for optimal management of groundwater supply in drought areas, Annual Performance Plan for Yellowing Technology Development Project, 417p.
6 Kim, G.B., Hwang, C.I., Choi, M.R., 2020, Assessment of the need and potential for groundwater artificial recharge based on the water supply, water demand, and aquifer properties in a drought region of South Korea, Environmental Earth Sciences, In Press.
7 Kim, G.B., Hwang, C.I., Shin, H.J., Choi, M.R., 2019, Applicability of groundwater recharge rate estimation method based on artificial neural networks in unmeasured areas, Journal of the Geological Society of Korea, 55(6), 693-701 (in Korean with English abstract).   DOI
8 Lee, Y.D., Shin, D.M., Kim, B.J., Kim, G.B., 2019, Selecting aquifer artificial recharge methods based on characteristics of the target aquifer, Journal of Engineering Geology, 29(4), 483-494 (in Korean with English abstract).   DOI
9 MAF (Ministry of Agriculture and Forestry), 1996, A study of artificial groundwater recharge in Cheju area, 116p.
10 Moon, S.H., Ha, K., Kim, Y., Koh, D.C., Yoon, H., 2014, Examination for efficiency of groundwater artificial recharge in alluvial aquifer near Nakdong river of Changweon area, Korea, Economic and Environmental Geology, 47(6), 611-623 (in Korean with English abstract).   DOI
11 Moon, S.H., Kim, Y., Kim, S.Y., Ki, M.G., 2016, Setup of infiltration galleries and preliminary test for estimating its effectiveness in Sangdae-ri water curtain cultivation area of Cheongju, Korea, Economic and Environmental Geology, 49(6), 445-458 (in Korean with English abstract).   DOI
12 Oh, S.H., Kim, Y., Koo, M.H., 2011, Modeling artificial groundwater recharge in the Hancheon drainage area, Jeju island, Korea, Journal of Soil and Groundwater Environment, 16(6), 34-45 (in Korean with English abstract).   DOI
13 Park, G., Lee, H., Koo, M.H., Kim, Y., 2016, Strategies for an effective artificial recharge in alluvial stream-aquifer systems undergoing heavy seasonal pumping, Journal of the Geological Society of Korea, 52(3), 211-219 (in Korean with English abstract).   DOI