DOI QR코드

DOI QR Code

MAGNETIC HELICITY PUMPING BY TWISTED FLUX TUBE EXPANSION

  • CHAE JONGCHUL (Department of Astronomy and Space Science, Chungnam National University, Big Bear Solar Observatory, NJIT) ;
  • MOON Y.-J. (Big Bear Solar Observatory, NJIT, Korea Astronomy Observatory) ;
  • RUST D. M. (Applied Physics Laboratory, Johns Hopkins University) ;
  • WANG HAIMIN (Big Bear Solar Observatory, NJIT) ;
  • GOODE PHILIP R. (Big Bear Solar Observatory, NJIT)
  • Published : 2003.03.01

Abstract

Recent observations have shown that coronal magnetic fields in the northern (southern) hemisphere tend to have negative (positive) magnetic helicity. There has been controversy as to whether this hemispheric pattern is of surface or sub-surface origin. A number of studies have focused on clarifying the effect of the surface differential rotation on the change of magnetic helicity in the corona. Meanwhile, recent observational studies reported the existence of transient shear flows in active regions that can feed magnetic helicity to the corona at a much higher rate than the differential rotation does. Here we propose that such transient shear flows may be driven by the torque produced by either the axial or radial expansion of the coronal segment of a twisted flux tube that is rooted deeply below the surface. We have derived a simple relation between the coronal expansion parameter and the amount of helicity transferred via shear flows. To demonstrate our proposition, we have inspected Yohkoh soft X-ray images of NOAA 8668 in which strong shear flows were observed. As a result, we found that the expansion of magnetic fields really took place in the corona while transient shear flows were observed in the photosphere, and the amount of magnetic helicity change due to the transient shear flows is quantitatively consistent with the observed expansion of coronal magnetic fields. The transient shear flows hence may be understood as an observable manifestation of the pumping of magnetic helicity out of the interior portions of the field lines driven by the expansion of coronal parts as was originally proposed by Parker (1974).

Keywords

References

  1. J. Geophys. Res. v.105 Rate of helicity production by solar rotation Berger, M. A.;Ruzmaikin, A. https://doi.org/10.1029/1999JA900392
  2. ApJ H alpha Surges and X-Ray Jets in AR 7260 Canfield, R. C.;Reardon, K. P.;Leka, K. D.;Shibata, K.;Yokoyama, T.;Shimojo, M.
  3. ApJ v.533 Active Region Loops Observed with SUMER on Board the SOHO Chae, J.;Wang, H.;Qiu, J.;Goode, P. R.;Wilhelm, K. https://doi.org/10.1086/308640
  4. ApJ v.560 The Formation of a Prominence in Active Region NOAA 8668. I. SOHO/MDI Observations of Magnetic Field Evolutin Chae, J.;Wang, H.;Qiu, J.;Goode, P. R.;Strous, L.;Yun, H. S. https://doi.org/10.1086/322491
  5. ApJ v.590 Observational Determination of the Rate of Magnetic Helicity Transport through the Solar Surface via the Horizontal Motion of Field Line Footpoints Chae, J. https://doi.org/10.1086/376826
  6. J. Geophys. Res. v.101 Theory of prominence eruption and propagation: Interplanetary consequences Chen, J. https://doi.org/10.1029/96JA02644
  7. ApJ v.490 Evidence of an Erupting Magnetic Flux Rope: LASCO Coronal Mass Ejection of 1997 April 13 Chen, J.(et al.) https://doi.org/10.1086/311029
  8. Space Science Reviews v.95 Physics of Coronal Mass Ejections: A New Paradigm of Solar Eruptions Chen, J. https://doi.org/10.1023/A:1005266918803
  9. Sol. Phys. v.207 The Magnetic Helicity Injected by Shearing Motions Demoulin, P.;Mandrini, C. H.;Van Driel-Gesztelyi, L.;Lopez Fuentes, M. C.;Aulanier, G. https://doi.org/10.1023/A:1015531804337
  10. A&A v.382 What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978 Demoulin, P.;Mandrini, C. H.;van Driel-Gesztelyi, L.;Thompson, B. J.;Plunkett, S.;Kovari, Z.;Aulanier, G.;Young, A. https://doi.org/10.1051/0004-6361:20011634
  11. ApJ v.539 Magnetic Helicity Generation by Solar Differential Rotation DeVore, C. R. https://doi.org/10.1086/309274
  12. Generation of Coronal Currents by the Solar Convection Zone v.18 Galloway, D. J.;Uchida, Y.;Weiss, N. O. https://doi.org/10.1071/AS01057
  13. Sol. Phys. v.208 The Magnetic Helicity Budget of a cme-Prolific Actie Region Green, L. M.;Lopez Fuentes, M. C.;Mandrini, C. H.;Demeoulin, P.;van Driel-Gesztelyi, L.;Culhane, J. L. https://doi.org/10.1023/A:1019658520033
  14. ApJ v.220 Transport of twist in force-free magnetic flux tubes Jockers, K. https://doi.org/10.1086/155998
  15. A&A v.388 The EIT coil-like structure in the March 20, 2000 eruptive prominence Karlicky, M.;Simberova, S. https://doi.org/10.1051/0004-6361:20020345
  16. Sol. Phys. v.91 Rotation in prominences Liggett, M.;Zirin, H. https://doi.org/10.1007/BF00146298
  17. ApJ v.488 Dynamics of a Thin Twisted Flux Tube Longcope, D. W.;Klapper, I. https://doi.org/10.1086/304680
  18. ApJ v.545 A Model for the Emergence of a Twisted Magnetic Flux Tube Longcope, D. W.;Welsch, B. T. https://doi.org/10.1086/317846
  19. ApJ v.574 Flare Activity and Magnetic Helicity Injection by Photospheric Horizontal Motions Moon, Y. J.;Chae, J.;Choe, G. S.;Wang, H.;Park, Y. D.;Yun, H. S.;Yurchyshin, V. B.;Goode, P. R. https://doi.org/10.1086/340975
  20. ApJ v.580 Impulsive Variations of the Magnetic helicity Change Rate Associated with Eruptive Flares Moon, Y. J.;Chae, J.;Wang, H.;Choe, G. S.;Park, Y. D. https://doi.org/10.1086/343130
  21. ApJ v.573 Photospheric Motions and Coronal Mass Ejection Productivity Nindos, A.;Zhang, H. https://doi.org/10.1086/341937
  22. Multi-Wavelength Observations of Coronal Structure and Dynamics - Yohkoh 10th Anniversary Meeting Concurrent Rotating Sunspots, Twisted Coronal Fans, Sigmoid Structures, and Coronal Mass Ejections Nightingale, R. W.;Shine, R. A.;Brown, D. S.;Wolfson, C. J.;Schrijver, K. J.;Metcalf, T. R.;Title, A. M.
  23. ApJ v.191 Dynamical Properties of Twisted Ropes of Magnetic Field and the Vigor of New Active Regions on the Sun Parker, E. N. https://doi.org/10.1086/152961
  24. PASP v.53 The Rotation of a Tornado Prominence Pettit, E.
  25. ApJ v.440 Latitudinal variation of helicity of photospheric magnetic fields Pevtsov, A. A.;Canfield, R. C.;Metcalf, T. R. https://doi.org/10.1086/187773
  26. ApJ v.481 On the Subphotospheric Origin of Coronal Electric Currents Pevtsov, A. A.;Canfield, R. C.;McClymont, A. N. https://doi.org/10.1086/304065
  27. ApJ v.549 Hemispheric Helicity Trend for Solar Cycle 23 Pevtsov, A. A.;Canfield, R. C.;Latushko, S. M. https://doi.org/10.1086/319179
  28. Sol. Phys. v.182 Rotating Transition Region Features Observed with SOHO Coronal Diagnostic Spectrometer Pike, C. D.;Mason, H. E. https://doi.org/10.1023/A:1005065704108
  29. Sol. Phys. v.206 EUV Spectroscopic Observations of Spray Ejecta from an X2 Flare Pike, C. D.;Mason, H. E. https://doi.org/10.1023/A:1015093902578
  30. American Geophysical Union Geophysical Monograph Series v.111 Magnetic Helicity and Relaxation Phenomena in the Solar Corona Priest, E. R. https://doi.org/10.1029/GM111p0141
  31. J. Geophys. Res. v.106 A new paradigm for solar filament eruptions Rust, D. M. https://doi.org/10.1029/2000JA004016
  32. 3rd SOHO workshop: Solar Dynamic Phenomena and Solar Wind Consequences Helicity Charging and Eruption of Magnetic Flux from the Sun Rust, D. M.;Kumar, A.
  33. PASJ v.44 Continual expansion of the active-region corona observed by the YOHKOH Soft X-ray Telescope Uchida, Y.;McAllister, A.;Strong, K. T.;Ogawara, Y.;Shimizu, T.;Matsumoto, R.;Hudson, H. S.
  34. American Geophysical Union Geophysical Monograph Series v.111 Photospheric Motions as a Source of Twist in Coronal Magnetic Fields van Ballegooijen, A. A. https://doi.org/10.1029/GM111p0213
  35. ApJ v.501 Magnetic Flux Transport and the Formation of Filament Channels on the Sun van Ballegooijen, A. A.;Cartledge, N. P.;Priest, E. R. https://doi.org/10.1086/305823
  36. Sol. Phys. v.146 Kinematics and evolution of twist in the eruptive prominence of August 18, 1980 Vrsnak, B.;Ruzdjak, V.;Rompolt, B.;Rosa, D.;Zlobec, P. https://doi.org/10.1007/BF00662176
  37. ApJ v.424 Vector magnetic field changes associated with X-class flares Wang, H.;Ewell, M. W., Jr.;Zirin, H.;Ai, G. https://doi.org/10.1086/173901
  38. ApJ v.576 Rapid Changes of Magnetic Fields Associated with Six X-Class Flares Wang, H.;Sprock, T. J.;Qiu, J.;Ji, H.;Yurchyshyn, V.;Moon, Y.-J.;Denker, C.;Goode, P. R. https://doi.org/10.1086/341735
  39. ApJ v.512 Comparison of Two Coronal Mass Ejections Observed by EIT and LASCO with a Model fo an Erupting Magnetic Flux Rope Wood, B. E.;Karovska, M.;Chen, J.;Brueckner, G. E.;Cook, J. W.;Howard, R. A. https://doi.org/10.1086/306758

Cited by

  1. The Rotating Sunspot in AR 10930 vol.258, pp.2, 2009, https://doi.org/10.1007/s11207-009-9425-7
  2. Magnetic helicity balance during a filament eruption that occurred in active region NOAA 9682 vol.530, 2011, https://doi.org/10.1051/0004-6361/201116700
  3. DISTRIBUTION OF ELECTRIC CURRENTS IN SUNSPOTS FROM PHOTOSPHERE TO CORONA vol.793, pp.1, 2014, https://doi.org/10.1088/0004-637X/793/1/15
  4. What helicity can tell us about solar magnetic fields vol.29, pp.1-2, 2008, https://doi.org/10.1007/s12036-008-0006-1
  5. Magnetic Helicity Injection in Active Regions vol.671, pp.1, 2007, https://doi.org/10.1086/522666
  6. Solar activity and its evolution across the corona: recent advances vol.3, 2013, https://doi.org/10.1051/swsc/2013039
  7. Multiwavelength Study of a Solar Eruption from AR NOAA 11112 I. Flux Emergence, Sunspot Rotation and Triggering of a Solar Flare vol.282, pp.2, 2013, https://doi.org/10.1007/s11207-012-0174-7
  8. KINEMATICS OF SOLAR CHROMOSPHERIC SURGES OF AR 10930 vol.47, pp.6, 2014, https://doi.org/10.5303/JKAS.2014.47.6.311
  9. Recent theoretical and observational developments in magnetic helicity studies vol.39, pp.11, 2007, https://doi.org/10.1016/j.asr.2006.12.037
  10. Filament eruption in association with rotational motion near the filament footpoints vol.26, 2014, https://doi.org/10.1016/j.newast.2013.07.001
  11. Twist transport in strongly torsioned astrophysical flux tubes vol.310, pp.1-2, 2007, https://doi.org/10.1007/s10509-007-9393-z
  12. A Survey of Changes in Magnetic Helicity Flux on the Photosphere During Relatively Low-class Flares vol.865, pp.2, 2018, https://doi.org/10.3847/1538-4357/aada7e