• Title/Summary/Keyword: pumping effect

Search Result 287, Processing Time 0.028 seconds

The hydraulic characteristics with tidal effect for pumping test at the costal rock aquifer (해안가 암반대수층에서 양수시험 시 조석효과에 의한 수리특성)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kim, Dong-Soo;Chung, Sang-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1929-1933
    • /
    • 2008
  • 조석에 의한 지하수위변동이 발생하는 해안가 암반대수층에서 고조(high tide)과 저조(low tide) 조건에서의 차이를 규명하기 위한 양수시험이 수행되었다. 본 연구에서 양수시험이 수행된 시험대 수층은 암반층으로서 시험공들은 해안가에서 약 180 m 이격되어 있으며, 양수정(MW1공)과 관측정(MW2공)의 이격거리는 8.05 m 이다. 양수정과 관측정 모두 공 내경은 0.205 m 이며, 케이싱심도는 지표면하 19 m 정도이다. 그리고, 양수정과 관측정의 지하수위는 지표면하 5 m 정도에 형성 되어 있으며, 시험대수층의 두께는 약 40 m 정도이다. 양수시험은 총 3회 수행되었으며, 모든 시험에서 수중모터 설치심도는 지표면하 30 m 이고 양수율은 $75\;m^3/day$로서 동일하였다. 그러나, 양수시작 시간의 차이를 두어 고조 후 1회(1차 시험), 저조 후 2회(2차 및 3차 시험) 수행되었다. 양수정과 관측정에서 자동수위측정기(Model 3001, Solinst)를 설치하여 관측된 지하수위변동 자료에 의하면, 조석현상 발생 후 시험공 내 지하수위변동 경과시간은 고조(high tide) 후 2시간, 저조 (low tide) 후 1시간 정도인 것으로 나타났다. 따라서, 양수시험 시 1차 시험은 고조 후 2시간 경과한 시점에서, 2차 및 3차 시험은 저조 후 1시간 경과한 시점에서 양수가 시작되었다. 양수시험에 의한 경과시간에 따른 수위강하량 그래프에서는 고조조건이 저조조건에 비해 수위강하량이 더 적은 것으로 나타났다. 이러한 원인은 저조에 비해 고조 조건에서는 해수에 의한 지하수위가 상승하여, 동일한 양수조건에서 수위강하량이 적게 나타난 것이다. 양수시험 자료가 AQTESOLV 3.5 프로그램을 이용하여 해석되었다. Theis method에 의해 산정된 수리전도도는 고조 조건의 양수시험에서는 $4.159{\times}10^{-6}\;m/sec$, 저조 후에서는 각각 $3.818{\times}10^{-6}\;m/sec$$3.926{\times}10^{-6}\;m/sec$ 이었다. 저조 후에 비해 고조 후의 수리전도도가 5% 이상 높은 것으로 산정되었다. 이상의 연구 결과들에 의해, 해안가 암반대수층에서는 양수시험 시 조석효과에 의한 수리적인 변동을 고려한 설계와 해석이 수행되어야함을 확인할 수 있었다.

  • PDF

Characteristics of Settlement for Non-woven Geotextile through Cyclic Loading Model Test (원형토조 시험을 통한 반복하중에 따른 부직포의 침하특성)

  • Choi, Chan-Yong;Lee, Jin-Wook;Kim, Hyun-Ki
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The ballast track, the most common type of conventional railroad track in Korea, is deteriorated by abrasion of ballast, it's penetration into roadbed, and rugged surface of roadbed caused by cyclic loading of train. Persistent occurrence of those phenomena lead to insufficient drain capacity, one of major factors in track design, and it increases pore water pressure and decreases of shear strength under rainfall condition leading to unstable roadbed. In this study, cylindrical model tests are executed for 3 types of geotextile applying cyclic loading in order to observe the characteristics of displacement and bearing capacity of geotextile, and undrained condition has been applied for 0 day, 3 days and 7 days to each geotextiles. The results showed that there was about 1% difference at the final displacement rates between reinforced soils and nature soils and the displacement of the ground surface increases along with the degrees of the saturation. And in case that water contents exceeds the threshold, it is also apparent that weight and tensile strength of geotextile influences displacement of the ground surface. And the larger weight of geotextile is, the smaller plastic displacement. It is evaluated that non-woven fabric comes into effect on reducing the bearing capacity but, the weight of geotextile has little influence on it.

  • PDF

Groundwater Environment of the Okmyong Waste Landfill in the Pohang City (포항 옥명 폐기물 매립지의 지하수 환경)

  • 정상용;이강근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.223-232
    • /
    • 1998
  • The Okmyong Waste Landfill which is one of major industrial waste landfills in Korea has been used for 10 years since January, 1988. The groundwater in range of 2∼3 km from the landfill is a little acidic and has high concentrations of EC, NO$_3$, and SO$_4$ because of acidic rain in Pohang. The groundwater pattern in Piper's trilinear diagram belongs to Ca-SO$_4$and Na-SO$_4$types, but Ca-SO$_4$type is more predominant. The groundwater of five monitoring wells at the landfill area is a litle alkaline and has high concentrations of TS, COD, Na, Cl, SO$_4$, Alkalinity and F because of the effect of the leachates. They also have high heavy metals of Mn, Zn, Pb, Cr and Ni but toxic organic compounds are not detected. Their groundwater pattern is Na-SO$_4$type and distinguished from the groundwater pattern Na-Cl types of the Nanjido and the Seokdae Municipal Waste Landfills. The range of groundwater contamination which is validated up to now is about 120m west from the entrance of the Okmyong Waste Landfill. To prevent the dispersion of the leachates to the outside, cutoff walls should be constructed at the boundary of the landfill. Several pumping wells should also be developed at the landfill so that the contaminated groundwater can be pumped and treated at a leachate-treatment plant in the landfill.

  • PDF

Effect of Irrigation Water Salinization on Salt Accumulation of Plastic Film House Soil around Sumjin River Estuary (섬진강 하구 관개용수 염화에 의한 시설재배단지 토양의 염류집적 심화)

  • Lee, Seul-Bi;Hong, Chang-Oh;Oh, Ju-Hwan;Gutierrez, Jessie;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2008
  • The causes of salt accumulation in soils of plastic film houses nearby Sumjin river estuary in Mokdo-ri($127^{\circ}46'E\;35^{\circ}1'N$), Hadong, Gyeongnam, Korea were investigated in 2006. With chemical properties soils and water analyzed and fertilization status monitored, the study showed that mean salt concentration of soil was much higher at EC $4.3\;dS\;m^{-1}$ than the Korean average (EC $2.9\;dS\;m^{-1}$) in 2000s for plastic film house's soil with exchangeable Na $0.8\;cmol^+\;kg^{-1}$ and water-soluble Cl $232\;mg\;kg^{-1}$, and then might result to salt damage in sensitive crop plants. Salt concentration of ground water used as main irrigation water source contained very high EC with corresponding value of $2.6\;dS\;m^{-1}$. Particularly, increase of EC value was directly proportional with the increased pumping of ground water used as a water-covering system in order to protect the temperature inside plastic film houses from the early winter season. High Na and Cl portion of ions in water might had contributed to the specific ion damage in the crops. Secondly, heavy inputs of chemicals and composts significantly increased the accumulated salts in soil. Conclusively, salt accumulation might had been accelerated by use of salted-groundwater irrigation and heavy fertilization rate. To minimize this problem, ensuring good quality of irrigation water is essential as well as reducing fertilization level.

Environmental Survey for Productivity Enhancement of Cultured Fleshy Prawn Penaeus chinensis I. Effect of Sediment and Seawater Quality on Growth (대하양식장의 생산성향상을 위한 환경관리에 관한 연구 I. 대하 양식장의 저질 및 수질특성에 따른 성장)

  • 강주찬;구자근;이정식
    • Journal of Aquaculture
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • Successive management of prawn farm is strongly dependent upon monitoring of pond seawater quality which is generally influenced by an excessive food supplied sediment type and phytoplankton composition in the pond. For good condition of seawater quality it must need exchangning of fresh seawater by tidal current. Two distinct shrimp ponds Galha and Yunho which were different in seawater exchanging system and sediment type were selected to understand how some factors affected to seawater and sediment qualities in the pond. Prawn growth was also determined. Galha pond characterized by sand bottom with water exchanging by turn of the tidal current accumulated 1.8 mgS/g-dry as sulfide in sediment while Yunho pond mud- bottomed with seawater exchanging of pumping system showed 4.7mgS/g-dry when it was highest, Ammonia-N and hydrogen sulfide measured in the seawater were 0.31mg/${\ell}$ and 21.2 ${\mu}$${\ell}$/${\ell}$in Yunho and 0.10mg/${\ell}$and 10.8${\mu}$${\ell}$/${\ell}$in Galha pond respectively. Dissolved oxygen remained below 6.0mg/${\ell}$ in Galha and 5.0mg/${\ell}$in Yunho pond from June through August. Less growth of prawn was found in Yunho pond than in Galha pond. Prawn growth expressed as body length and weight were 138.3mm 22.9g in Yunho pond while they were length 158.2mm and 28.9g in Galha pond respectively when they were harvested in October. These results indicate that higher levels of ammonia-N and hydrogen sulfide and lower dissolved oxygen in bottom seawater of Yunho pond might affect the growth of cultured prawn.

  • PDF

The Effect of Decentralized Rainwater Tank System on the Reduction of Peak Runoff - A Case Study at M Village - (빗물저류조의 분산배치에 따른 첨두유출 저감효과 분석 - M 마을 사례 -)

  • Han, Moo-Young;Kum, So-Yoon;Mun, Jung-Soo;Kwak, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Recently climate change and increase of surface runoff caused the urban flooding. Traditional way of dealing with urban flooding has been to increase the sewer capacity or construction of pumping stations, however, it is practically almost impossible because of time, money and traffic problems. Multipurpose DRMS (Decentralized Rainwater Management System) is a new paradigm proposed and recommended by NEMA (National Emergency Management Agency) for both flood control and water conservation. Suwon City has already enacted the ordinance on sound water cycle management by DRMS. In this study, a flood prone area in Suwon is selected and analysis of DRMS has been made using XP-SWMM for different scenarios of RT installation with same total rainwater tank volume and location. Installing one rainwater tank of 3,000$m^3$ can reduce the peak flow rate by 15.5%. Installing six rainwater tanks of 500$m^3$ volume in the area can reduce the peak flow rate by 28%. Three tanks which is concentrated in the middle region can reduce peak rate more than evenly distributed tanks. The method and results found from this study can be used for the design and performance prediction of DRMS at a flood prone area by supplementing the existing sewer system without increase of the sewer capacity.

Fog Nozzle-Greenhouse Cooling System Analysis (포그노즐을 이용한 온실냉방시스템 분석)

  • 김영중;유영선;윤진하;오권영;김승희
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • Among the various vegetables eggplant and gourd family can stand against high temperature environmental condition, about 35$^{\circ}C$. However, most of greenhouse farmers are giving up crop cultivation during hot summer season due to extreme temperature, 4$0^{\circ}C$ or above, condition of greenhouse interior. To improve this inferior crop growth condition, for nozzle system was installed in the pet greenhouse and the effect of fog system was investigated in order to determine fog water amount and the required fog nozzle numbers according to house volumes. MEE fog nozzle was selected for this Investigation which can produce water particle size of 27${\mu}{\textrm}{m}$ with water amount of 100$m\ell$ at pumping pressure of 70kg/$\textrm{cm}^2$. House cooling test was conducted in the pet greenhouse with one minute fogging and one minute air ventilation without stopping. It maintained 32$^{\circ}C$ at the house interior when the atmosphere and the house temperature were 35 and 4$0^{\circ}C$, respectively. And, an experimental equation was developed through calculating the changes of relative humidity and temperature with psychrometric equation which revealed the moisture transfer pattern between the house air and fog system. It showed that the required water fogging amounts to reduce 1$0^{\circ}C$, 40 to 3$0^{\circ}C$, needs 80.7$\ell$ for 1-2W(8,350㎥) and 99.9$\ell$ for 3-2G-3S(10,330㎥) type greenhouse with particle size of 27${\mu}{\textrm}{m}$.

  • PDF

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.

Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안)

  • Kim, Min ji;Kim, Ji Eun;Park, Kyung Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Due to climate change, increased heavy rainfalls result in flood damage every year. To investigate the storm-runoff reduction effects of Low Impact Development (LID), this study performed runoff analyses using the U.S. Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) for past and future representative storm events of the Yongdu Rainwater Pumping Station basin. As a result, the infiltration loss for representative future rainfalls increased by 3.17 %, and the surface runoff and peak runoff rate increased significantly by 32.50 %, and 128.77 %, respectively. To reduce the increased surface runoff and peak runoff rates, this study investigated the applicability of LID approaches, including a permeable pavement, green roof, and rain garden, by adjusting the LID parameters and the ratio of installation area. We identified the ranges of LID parameters that decreased peak runoff rate and surface runoff, and increased infiltration. In addition, when the application ratio of permeable pavement, green roof, and rain garden was 2:1:3, best performance was attained, leading to a reduction of peak runoff of 26.85 %, infiltration loss 12.01 %, surface runoff 15.11 %, and storage 509.47 %. Based on analyzing the effect of storm runoff reductions for various return periods, it was found that as the return period increased, the proportion of peak runoff and surface runoff increased and the proportion of infiltration loss and storage decreased.