• Title/Summary/Keyword: pulse width distortion

Search Result 109, Processing Time 0.029 seconds

A Distortionless Digital PWM Implementation by means of a Non-integer delay FIR filtering (소수형 디지털연산 알고리즘을 이용한 디지털 PWM의 고유한 비선형특성의 보상)

  • 정진훈;정동호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2427-2430
    • /
    • 2003
  • A uniformly sampled digital pulse-width modulation adopting a pre-compensation filter scheme for applications in high-resolution digital-to-analog data conversion is described. It is shown that linearization of the intrinsic distortion resulting in uniformly sampled pulse-width modulation can be achieved by using a non-integer delay digital filter embedded within a noise shaping re-quantizer.

  • PDF

The Effects of the Stimulation Intensity and Inter-Electrode Distance on the Parameters of the Measured Sensory Nerve Signal (전기자극의 강도와 측정전극의 간격이 감각신경신호의 파라미터에 미치는 영향 연구)

  • Lim, Kyeong Min;Song, Tongjin
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.234-241
    • /
    • 2014
  • This study was designed to investigate the effects of stimulation intensity and inter-electrode distance on the parameters of the measured sensory nerve signal. 30 healthy subjects participated in this study. Sensory nerve signals were elicited by four different pulse amplitudes, i.e., 3, 6, 9, 12 mA, with the pulse width fixed at $500{\mu}s$. The sensory nerve signals elicited by the four different pulse amplitudes were measured by four different inter-electrode distances (20, 30, 40, and 50 mm). We extracted four parameters (pulse amplitude, pulse width, pulse area, and latency time from stimulation) from the sensory nerve signals. The measured pulse amplitude and pulse width were increased when the measuring inter-electrode distance was increased while the stimulating pulse amplitude was fixed. The measured pulse amplitude was saturated with the stimulating pulse amplitudes of over 6 mA while measuring inter-electrode distance. Under the same condition, measured pulse width was increased, and sensory nerve signal was initiated early. Sensory nerve signals, specially those of pulse amplitude, were distorted by a differential amplification method that commonly measures the human body signal. The experimental results indicate that the differential amplification method is required to be replaced when measuring nerve signals. Our observations suggested that the hyperpolarization of the action potential of the sensory nerve signal for preventing distortion could be used to clarify the correlation between the parameters of the sensory nerve signals and quantification of sensations.

Propagation and Crosstalk Characteristic Analysis of Pulse Shaped Signals on the Coupled Microstrip Lines (결합 마이크로스트립 선로상의 펄스형태 신호의 전파 및 누화 특성 해석)

  • Park, Sun-Keun;Kim, Nam;Rhee, Sung-Yup;Jang, Woo-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.516-524
    • /
    • 1997
  • The propagation properties of various pulse signal types(square pulse, Gaussian pulse, trapezoid pulse, RF pulse) on coupled microstrip lines are investigated. Numerical integration technique which has its accuracy and is easily simulated, is used to obtain the time domain response of pulse signals. Frequency-dependent characteristics of coupled microstrip line is obtained using Jansen's approximate equation. The propagation properties of pulse signal on coupled microstrip lines is analyzed regarding to its geometric structure (relative permittivity ${varepsilon}_r$ substrate height h, strip width w of the microstrip line) and pulse width ${\tau}$ of signal pulse. The simulation results show that space between two lines is very significant parameter in pulse distortion in comparison of any other parameters. The results of this paper are compatible to the trade-off determination of relative permittivity, substrate height, strip width and pulse width of signal pulse when a design of MIC and MMIC is necessary.

  • PDF

A study on the UWB Antenna Design Techniques for Improving Pulse Fidelity (펄스 충실도 개선을 위한 UWB 안테나 설계기법 연구)

  • Kim, Jung-Min;Kang, Eun-Kyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.299-307
    • /
    • 2013
  • In this paper, design of UWB Antenna which propagate impulse by pulse fidelity and distortion equation was induced and applied. UWB Antenna which has directional characteristic in UWB band should have low radiation loss and impulse radiation distortion. As a result, the paper designed wide band impedance transformer and microstrip slotline transit region structured antenna feeder line. By using the fabricated UWB antenna, the radiation pattern was measured in the radio anechoic chamber. Pulse fidelity of impulse radiation show good results more than 93% within ${\pm}30^{\circ}$ beam width.

Harmonic Elimination Method of Using Coupling Transformer in Twelve Pulse Inverter (12 펄스 인버터에서 결합변압기를 이용한 고조파 제거기법)

  • Jeong, Chang-Yong;Lee, Young-Woon;Choi, Kyu-Hyoung;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.613-615
    • /
    • 1996
  • Harmonic elimination method of using coupling transformer in twelve pulse inverter is presented for high power application. This method is using coupling transformer and PWM(pulse width modulation) switching and voltage source inverter. The object of proposed harmonic elimination method is obtained inverter output of low THD(Total Harmonic Distortion). The simulation results confirm the proposed harmonic elimination method.

  • PDF

A Study on the 3 phase 5 level PWM inverter reducing harmonics (고조파 저감형 3상 5레벨 PWM 인버터에 관한 연구)

  • 송언빈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.80-84
    • /
    • 1995
  • ABSTRACT - This paper presents a software based 3 phase 5 level pulse-width modulation(PWM) inverter to reduce total harmonic distortion. The proposed modulation technique can reduce total harmonic distortion and significantly improve the performance of the inverter. In the modulation mode where the frequency ratio is 36 and modulation index is 1.2∼2.0, harmonic components have been mostly eliminated and the magnitude of fundamental component have been maximized by the 3 phase 5 level PWM inverter.

  • PDF

A Controller for PWM AC/DC Converter Considering Distorted Input Voltage (왜곡된 입력 전압을 고려한 PWM AC/DC 컨버터 제어기)

  • 송홍석;남광희
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.1-8
    • /
    • 1997
  • PWM(Pulse Width Modulation) 컨버터의 제어에 있어서, 입력전압의 왜곡을 고려하지 않을 경우, 시스템의 성능 저하를 초래하게 된다. 본 논문은 왜곡된 3상 입력전압이 PWM 컨버터에 미치는 영향을 분석하고, 성능을 개선하기 위한 제어기를 설계한다. 제안된 방식은 단위 역률을 만족시키면서, THD(Total Harmonic Distortion) 및 DC-link 전압의 저차 ripple을 감소시킨다.

  • PDF

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter

  • Nagarajan, R.;Saravanan, M.
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.48-60
    • /
    • 2014
  • Multilevel inverters have been widely used for high-voltage and high-power applications. Their performance is greatly superior to that of conventional two-level inverters due to their reduced total harmonic distortion (THD), lower switch ratings, lower electromagnetic interference, and higher dc link voltages. However, they have some disadvantages such as an increased number of components, a complex pulse width modulation control method, and a voltage-balancing problem. In this paper, a novel nine-level reduced switch cascaded multilevel inverter based on a multilevel DC link (MLDCL) inverter topology with reduced switching components is proposed to improve the multilevel inverter performance by compensating the above mentioned disadvantages. This topology requires fewer components when compared to diode clamped, flying capacitor and cascaded inverters and it requires fewer carrier signals and gate drives. Therefore, the overall cost and circuit complexity are greatly reduced. This paper presents modulation methods by a novel reference and multicarrier based PWM schemes for reduced switch cascaded multilevel inverters (RSCMLI). It also compares the performance of the proposed scheme with that of conventional cascaded multilevel inverters (CCMLI). Simulation results from MATLAB/SIMULINK are presented to verify the performance of the nine-level RSCMLI. Finally, a prototype of the nine-level RSCMLI topology is built and tested to show the performance of the inverter through experimental results.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.