• Title/Summary/Keyword: pulse voltage

Search Result 1,982, Processing Time 0.035 seconds

New Configuration of 36-pulse Voltage Source Converter Using Pulse-Interleaving Auxiliary Bridge Circuit (펄스다중화 보조브리지회로를 이용한 새로운 구조의 36-펄스 전압원 컨버터)

  • Han, B.M.;Baek, S.T.;Jon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.31-35
    • /
    • 2004
  • This paper proposes a new configuration of 36-pulse voltage source converter which consists of two 6-pulse bridges and a pulse-interleaving auxiliary circuit. The system topology of proposed converter was derived to increase the pulse number of converter output voltage without increasing the number of 6-pulse bridges. The gate pulse generation was analyzed using the theoretical approach of multi-pulse switching converter. The operational feasibility of proposed system was verified by computer simulations with PSCAD/TMTDC software and experimental works with 3kVA hardware prototype. The proposed converter can be widely used for the uninterruptible power supply, the power quality compensator, and the distributed power generation, such as solar and fuel fell power system.

  • PDF

Long-Pulse Modulator for Klystron using a High-Voltage Solid-State Switch and a Droop Compensator

  • Vo, Nguyen Qui Tu;Kim, Young-Woo;Lee, Chang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.186-187
    • /
    • 2013
  • The paper presents a long-pulse modulator for klystron using a high-voltage solid-state switch and a droop compensator. The modulator guarantees the safe of klystron by limiting the amount of energy transferred to klystron in case of arc. The high performance of the modulator is also achieved by the fast transition time, high flatness and average power. The proposed prototype has produced pulses with a flat-top voltage -90[kV], pulse width 1ms and pulse frequency 200[Hz]. The validity of the long-pulse modulator for klystron has been verified by the simulation and experimental works.

  • PDF

A Basic Study about Design of High Voltage Pulse Transformer (고전압 펄스트랜스의 설계에 관한 기초 연구)

  • Chung, H.J.;Chung, Y.H.;Lee, D.H.;Hong, J.H.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2198-2200
    • /
    • 1999
  • In this study, it is the purpose to study about design and manufacture of a pulse transformer for using in pulse generator and a pulse laser system. In this experiment, a ferite core in transformer instead of air core is used. The performance of the transformer is demonstrated by a voltage pulse waveform according to inductance of primary and secondary in transformer. As a result, the voltage pulse width is increased as increasement of inductance in transformer. And the voltage rate between primary and secondary is almost same with rate of inductance between primary and secondary.

  • PDF

A Study on the Pulsed $CO_2$ Laser by the Switching Control of Leakage Transformer Primary (누설변압기 1차측의 스위칭 제어에 의한 펄스형 $CO_2$레이저에 관한 연구)

  • Chung, Hyeon-Ju;Lee, Dong-Hoon;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.541-545
    • /
    • 2000
  • We propose a pulsed $CO_2$laser below 30W by the AC(60Hz) switching control of leakage transformer primary which has some advantages of cost and size compared to a typical pulsed power supply. Pulse repetition rate is adjusted from 5 Hz to 60 to Hz control laser output. In this laser a low voltage open loop control for high voltage pulse discharge circuit is employed to aviod the Hv sampling or switching and high voltage leakage transformer is used to convert low voltage pulse rectified from AC to high voltage one. A ZCS(Zero Crossing Switch) circuit and a PIC(programble one-chip microprocessor are used to control gate signal of SCR precisely. The pulse repetition rate is limited by 60Hz due to the frequency of AC line and a high leadkage inductance. The maximum laser output was about 23 W at pulse repetition rate of 60Hz total gas mixture of $CO_2$ : $N_2$ : He=1: 9: 15 and total pressure of 18 Torr

  • PDF

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

Influence of reset pulse form on electrical characteristics in AC-PDP

  • Cho, T.S.;Ko, J.J.;Lee, C.W.;Cho, G.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.159-161
    • /
    • 2000
  • After the square type reset pulse, the condition of remaining wall charge has been experimentally investigated in AC-PDP with VDS (Versatile Driving Simulator) system, in which arbitrary driving waveform and sequence can be used. After the self-discharge process, almost wall charges are eliminated. But some wall charges are not and its quantity is dependent on the voltage of the reset pulse. When the voltage of the reset pulse is growing, its quantity is decreased. But if the voltage of the reset pulse is above 300V, the wall voltage due to remaining wall charge is constant and its value is found out 6V. Also it is found that its polarity is always same with the one made by the reset pulse. It means that the polarity is not changed by the self-discharge.

  • PDF

Design of an Integrated High Voltage Pulse Generation circuit for Driving Piezoelectric Printer Heads (피에조일렉트릭 프린터 헤드 구동을 위한 집적화된 고전압 펄스 발생 회로의 설계)

  • Lee, Kyoung-Rok;Kim, Jong-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.80-86
    • /
    • 2011
  • This paper presents an integrated variable amplitude high voltage pulse generation circuit with low power and small size for driving industrial piezoelectric printer heads. To solve the problems of large size and power overhead of conventional pulse generators that usually assembled with multiple high-cost discrete ICs on a PCB board, we have designed a new integrated circuit (IC) chip. Since all the functions are integrated on to a single-chip it can achieve low cost and control the high-voltage output pulse with variable amplitudes as well. It can also digitally control the rising and falling times of an output high voltage pulse by using programmable RC time control of the output buffer. The proposed circuit has been designed and simulatedd in a 180[nm] Bipolar-CMOS-DMOS (BCD) technology using HSPICE and Cadence Virtuoso Tools. The proposed single-chip pulse generation circuit is suitable for use in industrial printer heads requiring a variable high voltage driving capability.

High-Speed Characteristics of Plasma Display Panel using Priming Overlapping with Display Drive Method (표시기간 중첩 프라이밍 구동기술에 의한 플라즈마 디스플레이 패널의 고속구동특성)

  • Ryeom, Jeong-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2004-2009
    • /
    • 2007
  • A new high-speed drive method for the plasma display panel is proposed. In this method, the address period is inserted for the rest period of the sustain pulses and the priming pulse is applied on the entire panel at the same time overlapping with the sustain period. The ramp shaped priming pulse can be made with a simple drive circuit in this technology and the stable sustain discharge can be induced even by a narrow scan pulse in help of the space charge generated from the address discharge. From the experiments, it is ascertained that the priming pulse hardly influences the sustain discharge. Moreover, the voltage margin of the sustain discharge is almost constant though that of the address discharge broadens with narrowing the scan pulse width. And, if the time interval between the scan pulse and the sustain pulse is within $6{\mu}s$, the voltage margin of the address and the sustain discharges are unaffected though the applied position of the scan pulse is changed. High-speed driving with the address pulse of $0.7{\mu}s$ width was achieved and the address voltage margin of 20V and the sustain voltage margin of 10V were obtained.

Pulse Multiplication of 6-Pulse Thyristor Converter with Simple Auxiliary Circuit (간단한 보조회로 추가에 의한 6-펄스 싸이리스터 컨버터의 다펄스화)

  • 오준용
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.294-298
    • /
    • 2000
  • A new pulse multiplication technique based on 6-pulse thyristor converters is proposed in this paper. With the proposed technique 12-pulse 18-pulse and 24-pulse operations have been obtained both on the input current and on the output voltage. A control strategy over the whole range of phase angle is provided along with sophisticated input current and output voltage analysis. Experimental results from a laboratory prototype verify the proposed theory.

  • PDF