• Title/Summary/Keyword: pulse sensor

Search Result 541, Processing Time 0.027 seconds

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

A Parametric Study of Pulsed Gamma-ray Detectors Based on Si Epi-Wafer (실리콘 에피-웨이퍼 기반의 펄스감마선 검출센서 최적화 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Jeong, Sang-Hun;Kim, Jong-Yeol;Cho, Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1777-1783
    • /
    • 2014
  • In this paper, we designed and fabricated a high-speed semiconductor sensor for use in power control devices and analyzed the characteristics with pulsed radiation tests. At first, radiation sensitive circular Si PIN diodes with various diameters(0.1 mm ~5.0 mm) were designed and fabricated using Si epitaxial wafer, which has a $42{\mu}m$ thick intrinsic layer. The reverse leakage current of the diode with a radius of 2 mm at a reverse bias of 30 V was about 20.4 nA. To investigate the characteristic responses of the developed diodes, the pulsed gamma-radiation tests were performed with the intensity of 4.88E8 rad(Si)/sec. From the test results showing that the output currents and the rising speeds have a linear relationship with the area of the sensors, we decided that the optimal condition took place at a 2 mm diameter. Next, for the selected 2 mm diodes, dose rate tests with a range of 2.47E8 rad(Si)/sec to 6.21E8 rad(Si)/sec were performed. From the results, which showed linear characteristics with the radiation intensity, a large amount of photocurrent over 60mA, and a high speed response under 350ns without saturation, we can conclude that the our developed PIN diode can be a good candidate for the sensor of power control devices.

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.

ANALYSIS OF CHARGE COLLECTION EFFICIENCY FOR A PLANAR CdZnTe DETECTOR

  • Kim, Kyung-O;Kim, Jong-Kyung;Ha, Jang-Ho;Kim, Soon-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.723-728
    • /
    • 2009
  • The response property of the CZT detector ($5{\times}5{\times}5\;mm^3$), widely used in photon spectroscopy, was evaluated by considering the charge collection efficiency, which depends on the interaction position of incident radiation, A quantitative analysis of the energy spectra obtained from the CZT detector was also performed to investigate the tail effect at the low energy side of the full energy peak. The collection efficiency of electrons and holes to the two electrodes (i.e., cathode and anode) was calculated from the Hecht equation, and radiation transport analysis was performed by two Monte Carlo codes, Geant4 and MCNPX. The radiation source was assumed to be 59.5 keV gamma rays emitted from a $^{241}Am$ source into the cathode surface of this detector, and the detector was assumed to be biased to 500 V between the two electrodes. Through the comparison of the results between the Geant4 calculation considering the charge collection efficiency and the ideal case from MCNPX, an pronounced difference of 4 keV was found in the full energy peak position. The tail effect at the low energy side of the full energy peak was confirmed to be caused by the collection efficiency of electrons and holes. In more detail, it was shown that the tail height caused by the charge collection efficiency went up to 1000 times the pulse height in the same energy bin at the calculation without considering the charge collection efficiency. It is, therefore, apparent that research considering the charge collection efficiency is necessary in order to properly analyze the characteristics of CZT detectors.

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Algorithm of Copulsation Estimation for Counterpulsation using Pressure of VAD Outlet Cannula

  • Kang Jung-Soo;Lee Jung-Joo;Jung Min-Woo;Park Yong-Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.78-82
    • /
    • 2006
  • The ventricular assist device(VAD) helps to reduce the overload against the patient's native heart(NH). The pulsatile VAD pumps out the ventricular blood to the aorta with pulsatile flow. If the VAD pulsates simultaneously with the NH, the ventricle of the NH could confronts abnormally elevated aortic pressure, and this could deteriorate the ventricle rather than assist to recover it. Thus counterpulsation algorithms to avoid copulsation have been adopted by many VADs, but these methods utilize electrocardiography or arterial pressure signals, which may have difficulties to acquire consistently for a long period. In this study, the copulsation estimation algorithm for the counterpulsation is developed using the VAD outlet pressure signal. The VAD outlet pressure signal is good to maintain for a long time and the sensor part could be integrated to the VAD as a built-in module. From the VAD outlet pressure signal and its pump rate information calculated with Fast Fourier Transform, pulse peaks by the VAD and the NH were extracted and the next copulsation time at which the VAD and the NH would pulsate simultaneously was estimated. This estimation algorithm was implemented by using PC MATLAB software and tested for various pump rate conditions with mock circulation system. For each condition, the copulsation time was estimated successfully. Consequently, the results showed the possibility to use the outlet cannula pressure signal in the copulsation estimation.

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Speed Sensorless Control of Induction Motors in the Very tow Speed Region Considering the Secondary Resistance Identification (2차저항 동정을 고려한 유도전동기의 저속영역 속도센서리스 제어)

  • 황동일;이진국;정석권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • The speed control without a speed sensor is expected strongly to progress reliability, simplicity and cost performance of Induction Motor(I.M) systems. Also, it contributes to expansion of I.M systems into various industrial application fields. This paper investigates a novel speed sensorless control method of I.M considering the secondary resistance identification based on the transientless torque control technique. Especially, this paper aimed at the identification of the secondary resistance simultaneously with speed estimation superposing of sinusoidal flux wave to a constant flux value. Furthermore, the secondary flux with some frequency is controlled independently on torque control. The proposed speed estimation method is derived from a motor circuit equation theoretically and also it can be conducted easily by detecting primary motor currents and primary voltage commands at every sampling time. Some numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter are performed to verify the proposed method.

  • PDF

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.

Current Sensorless Three Phase PWM AC/DC Boost Converter with Unity Power Factor (전류센서리스 단위역률 3상 PWM AC/DC Boost 컨버터)

  • 천창근;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • Diode rectifier which can't be controlled output voltage and phase control converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, three phase PWM(Pulse Width Modulation) AC/DC boost converter is studied to solve these problems. The characteristics of a proposed converter are to control the phase of current without current sensor as a very simple control algorithm using circuit parameters only and to apply sinusoidal PWM method with fixed switching frequency due to a difficult design of input filter and switching device. We simulate for the proposed algorithm that high power factor is achieved and DC link voltage has fast dynamic response without ripple in rectifying and regenerating operation. As a result of experiment with circuit parameter(inductor, capacitor) decided in simulation, the proposed converter had high power factor and reduction of low order harmonics as against diode rectifier.