DOI QR코드

DOI QR Code

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase

다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법

  • Ku, Nayeong (Department of Chemistry, Kyungpook National University) ;
  • Byeon, Ayeong (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 구나영 (경북대학교 자연과학대학 화학과) ;
  • 변아영 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2021.11.10
  • Accepted : 2021.11.22
  • Published : 2021.12.10

Abstract

In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.

본 논문에서는 경제적이며 일회용 센서칩으로 제작 가능한 스크린프린팅한 탄소칩 전극[screen printed carbon electrode(SPCE)]에 다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제를 융합하여 제작된 나노복합체를 도포한 센서를 개발하고 이를 내분비 저하 물질이면서, 비만, 당뇨병 및 심혈관질환 등의 만성질환 및 성조숙증, 여성 생식 질환, 불임 등과 관련성이 입증된 비스페놀A 농도 분석에 적용하고자 하였다. 다중벽 탄소 나노 튜브를 산화시켜 음전하를 띠게 한 후 양전하를 띠는 전도성고분자인 polydiallyldimethylammonium (PDDA)로 감싸준 후 용액의 pH를 조절하여 음전하를 띠게 한 티로시나아제를 첨가하여 최종적으로 산화된 다중벽 탄소 나노 튜브-PDDA-티로시나아제 나노복합체를 형성하였다. 상기 나노복합체를 물리적으로 흡착시킨 센서칩 표면을 비스페놀A 용액에 접촉시키고, 비스페놀A가 티로시나아제와 2단계의 효소-기질반응을 할 수 있는 충분한 시간(3분)을 주면, 생성물[4,4'-isopropylidenebis(1,2-benzoquinone)]이 생성된다. 이 때 순환전압전류법과 시차펄스전압전류법을 이용하여 생성물[4,4'-isopropylidenebis(1,2-benzoquinone)]을 환원(-0.08V vs. Ag/AgCl)하였을 때 얻어진 전류값 변화를 측정하여 비스페놀A의 농도를 정량적으로 분석하였다. 추가적으로 개발한 센서 전극표면에 비스페놀A와 유사한 비스페놀S 방해물질을 비스페놀A와 함께 접촉하였을 때 비스페놀A에 대한 우수한 선택성을 확인하였다. 최종적으로 제작한 센서를 실험실에서 제작한 환경 시료안에 비스페놀A의 농도를 분석하는 데 적용함으로써 실제 현장에서 활용될 수 있는 가능성을 시사하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (Grant number: NRF-2019R1A2C1002710).

References

  1. Y.-J. Lee and G.-J. Kim, Exploratory study of post- COVID-19 changes in eating behaviors: focused on behavior of restaurant visit, home eating behavior and delivery food purchase behavior, Culinary Science & Hospitality Research, 27, 133-142 (2021).
  2. J. S. LAKIND and D. Q. NAIMAN, Daily intake of bisphenol A and potential sources of exposure: 2005-2006 national health and nutrition examination survey, J. Expo. Sci. Environ. Epidemiol., 21, 272-279 (2011). https://doi.org/10.1038/jes.2010.9
  3. K. L. Howdeshell, P. H. Peterman, B. M. Judy, J. A. Taylor, C. E. Orazio, R. L. Ruhlen, F. S. Vom Saal, and W. V. Welshons, Bisphenol A is released from used polycarbonate animal cages into water at room temperature, Environ. Health Perspect., 111, 1180-1187 (2003). https://doi.org/10.1289/ehp.5993
  4. W. A. DARK, E. C. CONRAD, and J. L. W. CROSSMAN, Liqiud chromatographic analysis of epoxy resins, J. Chromatogr. A, 91, 247-260 (1974). https://doi.org/10.1016/s0021-9673(01)97904-x
  5. H. Segner, K. Caroll, M. Fenske, C. R. Janssen, G. Maack, D. Pascoe, C. Sch.afers, G. F. Vandenbergh, M. Watts, and A. Wenzel, Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the european IDEA project, Ecotoxicol. Environ. Saf., 54, 302-314 (2003). https://doi.org/10.1016/S0147-6513(02)00039-8
  6. E. C. Dodds, and W. Lawson, Molecular structure in relation to oestrogenic activity. compounds without a phenanthrene nucleus, Proc. Royal Soc. B, 125, 222-232 (1938).
  7. P. Sohoni, and J. P. Sumpter, Several environmental oestrogens are also anti-androgens, J. Endocrinol., 158, 327-339 (1998). https://doi.org/10.1677/joe.0.1580327
  8. J. R. Rochester, Bisphenol A and human health: a review of the literature, Reprod. Toxicol., 42, 132-155 (2013). https://doi.org/10.1016/j.reprotox.2013.08.008
  9. F. S. vom Saal and C. Hughes, An extensive new literature concerning low-dose effects of bisphenol a shows the need for a new risk assessment, Environ. Health Perspect., 113, 926-933 (2005). https://doi.org/10.1289/ehp.7713
  10. M. Sugiura-Ogasawara, Y. Ozaki, S. Sonta, T. Makino, and K. Suzumori, Exposure to bisphenol a is associated with recurrent miscarriage, Hum. Reprod., 20, 2325-2329 (2005). https://doi.org/10.1093/humrep/deh888
  11. Y. B. Wetherill, C. E. Petre, K. R. Monk, A. Puga, and K. E. Knudsen, The xenoestrogen bisphenol a induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells, Mol. Cancer Ther., 1, 515-524 (2002).
  12. O. S. Anderson, M. S. Nahar, C. Faulk, T. R. Jones, C. Liao, K. Kannan, C. Weinhouse, L. S. Rozek, and D. C. Dolinoy, Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol a, Environ. Mol. Mutagen., 53, 334-342 (2012). https://doi.org/10.1002/em.21692
  13. M. Kundakovic and F. A. Champagne, Epigenetic perspective on the developmental effects of bisphenol a, Brain Behav. Immun., 25, 1084-1093 (2011). https://doi.org/10.1016/j.bbi.2011.02.005
  14. R. A. Keri, S. M. Ho, P. A. Hunt, K. E. Knudsen, A. M. Soto, and G. S. Prins, An evaluation of evidence for the carcinogenic activity of bisphenol a, Reprod. Toxicol., 24, 240-252 (2007). https://doi.org/10.1016/j.reprotox.2007.06.008
  15. A. Tsalbouris, N. P. Kalogiouri, A. Kabir, K. G. Furton, and V. F. Samanidou, Bisphenol a migration to alcoholic and non-alcoholic beverages-an improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD, Microchem. J., 162, 105846-105852 (2021). https://doi.org/10.1016/j.microc.2020.105846
  16. R. Mercogliano, and S. Santonicola, Investigation on bisphenol a levels in human milk and dairy supply chain: a review, Food Chem. Toxicol., 114, 98-107 (2018). https://doi.org/10.1016/j.fct.2018.02.021
  17. D.-x. Wang, X.-c. Wang, Q.-j. Hu, C.-x. Zhang, F. Li, F.-l. Wang, and Q.-f. Feng, Salting-out Assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of bisphenol a and six analogs (B, E, F, S, BADGE, BFDGE) in canned coffee drinks by ultra-performance liquid chromatography-tandem mass spectrometry, Food Anal. Methods, 14, 441-452 (2020).
  18. M. Jia, S. Chen, T. Shi, C. Li, Y. Wang, and H. Zhang, Competitive plasmonic biomimetic enzyme-linked immunosorbent assay for sensitive detection of bisphenol a, Food Chem., 344, 128602-128610 (2021). https://doi.org/10.1016/j.foodchem.2020.128602
  19. E. H. Lee, S. K. Lee, M. J. Kim, and S. W. Lee, Simple and rapid detection of bisphenol a using a gold nanoparticle-based colorimetric aptasensor, Food Chem., 287, 205-213 (2019). https://doi.org/10.1016/j.foodchem.2019.02.079
  20. D. Kim, and B. Lee, Fluorescence detection of bisphenol a in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique, Korean J. Chem. Eng, 36, 1509-1517 (2019). https://doi.org/10.1007/s11814-019-0342-7
  21. Y. Lu, Q. Wang, C. Zhang, S. Li, S. Feng, and S. Wang, The development of a photothermal immunochromatographic lateral flow strip for rapid and sensitive detection of bisphenol a in food samples, Food Anal. Methods, 14, 127-135 (2020).
  22. Sarikokba, D. Tiwari, S. K. Prasad, D. J. Kim, S. S. Choi, and S.-M. Lee, Bio-composite materials precursor to chitosan in the development of electrochemical sensors: a critical overview of Its use with micro-pollutants and heavy metals detection, Appl. Chem. Eng., 31, 237-257 (2020). https://doi.org/10.14478/ACE.2020.1034
  23. S. Moon, J. Kim, H.-K. Choi, M.-G. Kim, Y.-S. Lee, and K. Lee, Electrochemical Synthesis of Metal-organic Framework, Appl. Chem. Eng., 32, 229-236 (2021). https://doi.org/10.14478/ACE.2021.1036
  24. J. Li, Y. Si, and H. J. Lee, Recent research trend of biosensors for colorectal cancer specific protein biomarkers, Appl. Chem. Eng., 32, 253-259 (2021). https://doi.org/10.14478/ACE.2021.1040
  25. Y. Liu, L. Yao, L. He, N. Liu, and Y. Piao, Electrochemical enzyme biosensor bearing biochar nanoparticle as signal enhancer for bisphenol a detection in water, Sensors, 19, 1619-1622 (2019). https://doi.org/10.3390/s19071619
  26. L. Wu, H. Yan, J. Wang, G. Liu, and W. Xie, Tyrosinase incorporated with Au-Pt@SiO2 nanospheres for electrochemical detection of bisphenol a, J. Electrochem. Soc, 166, B562-B568 (2019). https://doi.org/10.1149/2.0141908jes
  27. X. Wang, X. Lu, L. Wu, and J. Chen, 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A, Biosens. Bioelectron, 65, 295-301 (2015). https://doi.org/10.1016/j.bios.2014.10.010
  28. X. Lu, X. Wang, L. Wu, L. Wu, Dhanjai, L. Fu, Y. Gao, and J. Chen, Response characteristics of bisphenols on a metal-organic framework-based tyrosinase nanosensor, ACS Appl. Mater. Interfaces, 8, 16533-16539 (2016). https://doi.org/10.1021/acsami.6b05008
  29. J. Zhao, L. Cong, Z. Ding, X. Zhu, Y. Zhang, S. Li, J. Liu, X. Chen, H. Hou, Z. Fan, and M. Guo, Enantioselective electrochemical sensor of tyrosine isomers based on macroporous carbon embedded with sulfato-β-cyclodextrin, Microchem. J., 159, 105439-105446 (2020). https://doi.org/10.1016/j.microc.2020.105439
  30. M. Han, Y. Qu, S. Chen, Y. Wang, Z. Zhang, M. Ma, Z. Wang, G. Zhan, and C. Li, Amperometric biosensor for bisphenol A based on a glassy carbon electrode modified with a nanocomposite made from polylysine, single walled carbon nanotubes and tyrosinase, Microchim. Acta, 180, 989-996 (2013). https://doi.org/10.1007/s00604-013-1018-3
  31. N. Zehani, P. Fortgang, M. Saddek Lachgar, A. Baraket, M. Arab, S. V. Dzyadevych, R. Kherrat, and N. Jaffrezic-Renault, Highly sensitive electrochemical biosensor for bisphenol a detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film, Biosens. Bioelectron, 74, 830-835 (2015). https://doi.org/10.1016/j.bios.2015.07.051
  32. Y. Wee, S. Park, Y. H. Kwon, Y. Ju, K. M. Yeon, and J. Kim, Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds, Biosens. Bioelectron, 132, 279-285 (2019). https://doi.org/10.1016/j.bios.2019.03.008
  33. Y. Piao, Z. Jin, D. Lee, H. J. Lee, H. B. Na, T. Hyeon, M. K. Oh, J. Kim, and H. S. Kim, Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles, Biosens. Bioelectron, 26, 3192- 3199 (2011). https://doi.org/10.1016/j.bios.2010.12.025
  34. J. Li, Y. Si, D. T. Nde, and H. J. Lee, Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer, Appl. Chem. Eng., 32, 461-466 (2021). https://doi.org/10.14478/ACE.2021.1057
  35. T. Mendum, E. Stoler, H. VanBenschoten, and J. C. Warner, Concentration of bisphenol a in thermal paper, Green Chem. Lett. Rev., 4, 81-86 (2011). https://doi.org/10.1080/17518253.2010.502908
  36. O. de Oliveira Jr, L. Ferreira, G. Marystela, F. de Lima Leite, and A. L. Da Roz, Nanoscience and its Applications, William Andrew, (2016).
  37. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of analytical chemistry, Cengage learning, (2013).
  38. C. Macca, and J. Wang, Experimental procedures for the determination of amperometric selectivity coefficients, Anal. Chim. Acta 303, 265-274 (1995). https://doi.org/10.1016/0003-2670(94)00511-J