Browse > Article
http://dx.doi.org/10.14478/ace.2021.1097

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase  

Ku, Nayeong (Department of Chemistry, Kyungpook National University)
Byeon, Ayeong (Department of Chemistry, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.6, 2021 , pp. 684-689 More about this Journal
Abstract
In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.
Keywords
Bisphenol A; Electrochemical biosensor; Screen printed carbon electrode; Tyrosinase; Multi-walled carbon nanotube; Polyelectrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. L. Howdeshell, P. H. Peterman, B. M. Judy, J. A. Taylor, C. E. Orazio, R. L. Ruhlen, F. S. Vom Saal, and W. V. Welshons, Bisphenol A is released from used polycarbonate animal cages into water at room temperature, Environ. Health Perspect., 111, 1180-1187 (2003).   DOI
2 Y.-J. Lee and G.-J. Kim, Exploratory study of post- COVID-19 changes in eating behaviors: focused on behavior of restaurant visit, home eating behavior and delivery food purchase behavior, Culinary Science & Hospitality Research, 27, 133-142 (2021).
3 Y. Lu, Q. Wang, C. Zhang, S. Li, S. Feng, and S. Wang, The development of a photothermal immunochromatographic lateral flow strip for rapid and sensitive detection of bisphenol a in food samples, Food Anal. Methods, 14, 127-135 (2020).
4 Sarikokba, D. Tiwari, S. K. Prasad, D. J. Kim, S. S. Choi, and S.-M. Lee, Bio-composite materials precursor to chitosan in the development of electrochemical sensors: a critical overview of Its use with micro-pollutants and heavy metals detection, Appl. Chem. Eng., 31, 237-257 (2020).   DOI
5 S. Moon, J. Kim, H.-K. Choi, M.-G. Kim, Y.-S. Lee, and K. Lee, Electrochemical Synthesis of Metal-organic Framework, Appl. Chem. Eng., 32, 229-236 (2021).   DOI
6 J. Li, Y. Si, and H. J. Lee, Recent research trend of biosensors for colorectal cancer specific protein biomarkers, Appl. Chem. Eng., 32, 253-259 (2021).   DOI
7 D.-x. Wang, X.-c. Wang, Q.-j. Hu, C.-x. Zhang, F. Li, F.-l. Wang, and Q.-f. Feng, Salting-out Assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of bisphenol a and six analogs (B, E, F, S, BADGE, BFDGE) in canned coffee drinks by ultra-performance liquid chromatography-tandem mass spectrometry, Food Anal. Methods, 14, 441-452 (2020).
8 C. Macca, and J. Wang, Experimental procedures for the determination of amperometric selectivity coefficients, Anal. Chim. Acta 303, 265-274 (1995).   DOI
9 M. Han, Y. Qu, S. Chen, Y. Wang, Z. Zhang, M. Ma, Z. Wang, G. Zhan, and C. Li, Amperometric biosensor for bisphenol A based on a glassy carbon electrode modified with a nanocomposite made from polylysine, single walled carbon nanotubes and tyrosinase, Microchim. Acta, 180, 989-996 (2013).   DOI
10 Y. Piao, Z. Jin, D. Lee, H. J. Lee, H. B. Na, T. Hyeon, M. K. Oh, J. Kim, and H. S. Kim, Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles, Biosens. Bioelectron, 26, 3192- 3199 (2011).   DOI
11 M. Kundakovic and F. A. Champagne, Epigenetic perspective on the developmental effects of bisphenol a, Brain Behav. Immun., 25, 1084-1093 (2011).   DOI
12 X. Lu, X. Wang, L. Wu, L. Wu, Dhanjai, L. Fu, Y. Gao, and J. Chen, Response characteristics of bisphenols on a metal-organic framework-based tyrosinase nanosensor, ACS Appl. Mater. Interfaces, 8, 16533-16539 (2016).   DOI
13 E. C. Dodds, and W. Lawson, Molecular structure in relation to oestrogenic activity. compounds without a phenanthrene nucleus, Proc. Royal Soc. B, 125, 222-232 (1938).
14 P. Sohoni, and J. P. Sumpter, Several environmental oestrogens are also anti-androgens, J. Endocrinol., 158, 327-339 (1998).   DOI
15 F. S. vom Saal and C. Hughes, An extensive new literature concerning low-dose effects of bisphenol a shows the need for a new risk assessment, Environ. Health Perspect., 113, 926-933 (2005).   DOI
16 M. Sugiura-Ogasawara, Y. Ozaki, S. Sonta, T. Makino, and K. Suzumori, Exposure to bisphenol a is associated with recurrent miscarriage, Hum. Reprod., 20, 2325-2329 (2005).   DOI
17 R. Mercogliano, and S. Santonicola, Investigation on bisphenol a levels in human milk and dairy supply chain: a review, Food Chem. Toxicol., 114, 98-107 (2018).   DOI
18 O. S. Anderson, M. S. Nahar, C. Faulk, T. R. Jones, C. Liao, K. Kannan, C. Weinhouse, L. S. Rozek, and D. C. Dolinoy, Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol a, Environ. Mol. Mutagen., 53, 334-342 (2012).   DOI
19 E. H. Lee, S. K. Lee, M. J. Kim, and S. W. Lee, Simple and rapid detection of bisphenol a using a gold nanoparticle-based colorimetric aptasensor, Food Chem., 287, 205-213 (2019).   DOI
20 A. Tsalbouris, N. P. Kalogiouri, A. Kabir, K. G. Furton, and V. F. Samanidou, Bisphenol a migration to alcoholic and non-alcoholic beverages-an improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD, Microchem. J., 162, 105846-105852 (2021).   DOI
21 M. Jia, S. Chen, T. Shi, C. Li, Y. Wang, and H. Zhang, Competitive plasmonic biomimetic enzyme-linked immunosorbent assay for sensitive detection of bisphenol a, Food Chem., 344, 128602-128610 (2021).   DOI
22 D. Kim, and B. Lee, Fluorescence detection of bisphenol a in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique, Korean J. Chem. Eng, 36, 1509-1517 (2019).   DOI
23 Y. Wee, S. Park, Y. H. Kwon, Y. Ju, K. M. Yeon, and J. Kim, Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds, Biosens. Bioelectron, 132, 279-285 (2019).   DOI
24 X. Wang, X. Lu, L. Wu, and J. Chen, 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A, Biosens. Bioelectron, 65, 295-301 (2015).   DOI
25 O. de Oliveira Jr, L. Ferreira, G. Marystela, F. de Lima Leite, and A. L. Da Roz, Nanoscience and its Applications, William Andrew, (2016).
26 J. S. LAKIND and D. Q. NAIMAN, Daily intake of bisphenol A and potential sources of exposure: 2005-2006 national health and nutrition examination survey, J. Expo. Sci. Environ. Epidemiol., 21, 272-279 (2011).   DOI
27 H. Segner, K. Caroll, M. Fenske, C. R. Janssen, G. Maack, D. Pascoe, C. Sch.afers, G. F. Vandenbergh, M. Watts, and A. Wenzel, Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the european IDEA project, Ecotoxicol. Environ. Saf., 54, 302-314 (2003).   DOI
28 J. R. Rochester, Bisphenol A and human health: a review of the literature, Reprod. Toxicol., 42, 132-155 (2013).   DOI
29 Y. Liu, L. Yao, L. He, N. Liu, and Y. Piao, Electrochemical enzyme biosensor bearing biochar nanoparticle as signal enhancer for bisphenol a detection in water, Sensors, 19, 1619-1622 (2019).   DOI
30 J. Zhao, L. Cong, Z. Ding, X. Zhu, Y. Zhang, S. Li, J. Liu, X. Chen, H. Hou, Z. Fan, and M. Guo, Enantioselective electrochemical sensor of tyrosine isomers based on macroporous carbon embedded with sulfato-β-cyclodextrin, Microchem. J., 159, 105439-105446 (2020).   DOI
31 T. Mendum, E. Stoler, H. VanBenschoten, and J. C. Warner, Concentration of bisphenol a in thermal paper, Green Chem. Lett. Rev., 4, 81-86 (2011).   DOI
32 N. Zehani, P. Fortgang, M. Saddek Lachgar, A. Baraket, M. Arab, S. V. Dzyadevych, R. Kherrat, and N. Jaffrezic-Renault, Highly sensitive electrochemical biosensor for bisphenol a detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film, Biosens. Bioelectron, 74, 830-835 (2015).   DOI
33 Y. B. Wetherill, C. E. Petre, K. R. Monk, A. Puga, and K. E. Knudsen, The xenoestrogen bisphenol a induces inappropriate androgen receptor activation and mitogenesis in prostatic adenocarcinoma cells, Mol. Cancer Ther., 1, 515-524 (2002).
34 R. A. Keri, S. M. Ho, P. A. Hunt, K. E. Knudsen, A. M. Soto, and G. S. Prins, An evaluation of evidence for the carcinogenic activity of bisphenol a, Reprod. Toxicol., 24, 240-252 (2007).   DOI
35 D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Fundamentals of analytical chemistry, Cengage learning, (2013).
36 J. Li, Y. Si, D. T. Nde, and H. J. Lee, Development of Voltammetric Nanobio-incorporated Analytical Method for Protein Biomarker Specific to Early Diagnosis of Lung Cancer, Appl. Chem. Eng., 32, 461-466 (2021).   DOI
37 L. Wu, H. Yan, J. Wang, G. Liu, and W. Xie, Tyrosinase incorporated with Au-Pt@SiO2 nanospheres for electrochemical detection of bisphenol a, J. Electrochem. Soc, 166, B562-B568 (2019).   DOI
38 W. A. DARK, E. C. CONRAD, and J. L. W. CROSSMAN, Liqiud chromatographic analysis of epoxy resins, J. Chromatogr. A, 91, 247-260 (1974).   DOI