• Title/Summary/Keyword: pullulan

Search Result 125, Processing Time 0.024 seconds

Purification and Characterization of Branching Specificity of a Novel Extracellular Amylolytic Enzyme from Marine Hyperthermophilic Rhodothermus marinus

  • Yoon, Seong-Ae;Ryu, Soo-In;Lee, Soo-Bok;Moon, Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.457-464
    • /
    • 2008
  • An extracellular enzyme (RMEBE) possessing ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferring activity was purified to homogeneity from Rhodothermus marin us by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex-200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at $80^{\circ}C$. Its half-life was determined to be 73.7 and 16.7 min at 80 and $85^{\circ}C$, respectively. The enzyme was also halophilic and highly halotolerant up to about 2M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial ${\alpha}-(1{\rightarrow}4)$-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferase activity for small maltooligosaccharides, producing disproportionated ${\alpha}-(1{\rightarrow}6)$-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.

Synthesis and Thermotropic Liquid Crystalline Behaviors of 6-[4-(4'-(nitrophenylazo) phenoxycarbonyl)] pentanoated Polysaccharides (6-[4-(4'-(니트로페닐아조)펜옥시카보닐)]펜타노화 다당류들의 합성과 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • Fully or nearly fully 6- [4- (4'- (nitrophenylazo)phenoxycarbonyl)]pentanoated polysaccharide derivatives were synthesized by reacting cellulose, amylose, chitosan, chitin, alginic acid, pullulan or amylopectin with 6- [4- (4'- (nitrophenylazo)phenoxy) ] pentanoyl chloride (NA6C) and their thermotropic liquid crystalline behaviors were investigated. Like in the case of NA6C, all the polysaccharide derivatives formed monotropic nematic phases, suggesting that the mesophase structure of the polysaccharide derivatives is dertermined by the mesogenic side groups and not by the polysaccharide backbone. This is the first report of polysaccharide derivatives, except cellulose derivative, that form thermotropic nematic phases. The thermal stability and degree of order of the nematic phases observed for poly saccharide derivatives were significantly different from those reported for the polymers in which the azobenzene groups are attached to flexible or rigid backbones through flexible spacers. The results were discussed in terms of the difference in the arrangement of the main and side chains and the flexibility of the main chain.

MOLECULAR NUCLEAR IMAGING FOR TARGETING AND TRAFFICKING

  • Bom Hee-Seung;Min Jung-Jun;Jeong Hwan-Jeong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.399-404
    • /
    • 2006
  • Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and $^{99m}Tc$ as a radionuclide. We developed $^{99m}Tc-galactosylated$ chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed $^{99m}Tc-HYNIC-chitosan-transferrin$ to target inflammatory cells, which was more effective than $^{67}Ga-citrate$ for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of $^{99m}Tc-HMPAO-labeled$ liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that $^{99m}Tc-labeled$ biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques.

Processing of an Intracellular Immature Pullulanase to the Mature Form Involves Enzymatic Activation and Stabilization in Alkaliphilic Bacillus sp. S-1

  • Lee, Moon-Jo;Kang, Bong-Seok;Kim, Dong-Soo;Kim, Yong-Tae;Kim, Se-Kwon;Chung, Kang-Hyun;Kim, Jume-Ki;Nam, Kyung-Soo;Lee, Young-Choon;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Alkaliphilic Bacillus sp. S-1 secretes a large amount (approximately 80% of total pullulanase activity) of an extracellular pullulanase (PUL-E). The pullulanase exists in two forms: a precursor form (PUL-I: $M_r$ 180,000), and a processed form (PUL-E: $M_r$ 140,000). Two forms were purified to homogeneity and their properties were compared. PUL-I was different in molecular weight, isoelectric point, $NH_2$-terminal amino acid sequence, and stabilities over pH and temperature ranges. The catalytic activities of PUL-I were also distinguishable in the $K_m$ and $V_{max}$ values for various substrates, and in the specific activity for pullulan hydrolysis. PUL-E showed 10-fold higher specific activities than PUL-I. However. PUL-I is immunologically identical to PUL-E, suggesting that PUL-I is initially synthesized and proteolytically processed to the mature form of PUL-E. Processing was inhibited by PMSF, but not by pepstatin, suggesting that some intracellular serine proteases could be responsible for processing of the PUL-I. PUL-I has a different conformational structure for antibody recognition from that of PUL-E. It is also postulated that the translocation of alkaline pullulanase(AP) in the bacterium possibly requires processing of the $NH_2$-terminal region of the AP protein. Processing of the precursor involves a conformational shift. resulting in a mature form. Therefore. precursor processing not only cleaves the signal peptide, but also induces conformational shift. allowing development of active form of the enzyme.

  • PDF

Role of Dipeptide at Extra Sugar-Binding Space of Thermus Maltogenic Amylase in Transglycosylation Activity

  • Baek, Jin-Sook;Kim, Tae-Jip;Kim, Young-Wan;Cha, Hyun-Ju;Kim, Jung-Wan;Kim, Yong-Ro;Lee, Sung-Joon;Moon, Tae-Wha;Park, Kwan-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.969-975
    • /
    • 2003
  • Two conserved amino acid residues in the extra sugar-binding space near the catalytic site of Thermus maltogenic amylase (ThMA) were analyzed for their role in the hydrolysis and transglycosylation activity of the enzyme. Site-directed mutagenesis was carried out by replacing N33l with a lysine (N331K), E332 with a histidine (E332H), or by replacing both residues at the same time (N331K/E332H). The measured $K_m$ values indicated that affinities toward all substrates tested, including starch, pullulan, ${\beta}-cyclomaltodextrin$, and acarbose, were lower in all the mutants compared to that of wild-type ThMA, leading to reduced hydrolysis activity. In addition, the lower ratio of transglycosylation to hydrolysis in the mutants compared to that in the wild-type ThMA indicated that these mutants preferred hydrolysis to the transglycosylation reaction. These results demonstrated that the conserved dipeptide at 331 and 332 of ThMA is directly involved in the formation and accumulation of transfer products by accommodating acceptor sugar molecules.

Exopolysaccharide Production by Aureobasidium pullulans - Appearance of Melanin Pigment - (Aureobasidium pullulans 에 의한 Exopolysaccharide 생산 - 멜라닌 색소의 출현에 관한 연구 -)

  • 김재형;이기영;강성홍
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.134-142
    • /
    • 1989
  • In exopolysaccharide fermentation by Aureobasidium pulluans, the effects culture conditions (concentration of nitrogen, potassium phosphate, dissolved oxygen, and initial pH) on the production of exopolysaccharide and the appearance of melanin pigment were investigated. The results are as follows. (1) The specific growth rate and the specific production rate of exopolysaccharide were inhibited by substrate when the carbon source concentration higher than $50g\;/\;{\ell}$ and the cell growth increased with increases of nitrogen source but exopolysaccharide production decreased with the nitrogen concentration when it become greater than $1\;g\;/\;{\ell}$. (2) The maximum cell growth and the maximum exopolysaccharide production were obtained at initial pH values of 3.0 and 7.5 respectively. As the initial pH increased, the yeast-like cells increased and the increased of dissolved oxygen increased the cell growth and exopolysaccharide production. (3) As the concentration of dissolved oxygen is increased or the concentration of nitrogen source is decreased, the period of melanin pigment appearance becomes shorter and the melanin pigment never appeared when the initial pH was less than 3.0 or the potassium phosphate was not added.

  • PDF

Extracellular Secretion of a Maltogenic Amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its Application on the Production of Branched Maltooligosaccharides

  • Cho, Mee-Hyun;Park, Sang-Eun;Lee, Myung-Hun;Ha, Suk-Jin;Kim, Hae-Yeong;Kim, Myo-Jeong;Lee, Sung-Joon;Madsen, Soren M.;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • A maltogenic amylase gene from Lactobacillus gasseri ATCC33323 (LGMA) was expressed in Lactococcus lactis MG1363 using the P170 expression system. The successful production of recombinant LGMA (rLGMA) was confirmed by the catalytic activity of the enzyme in liquid and solid media. The N-terminal amino acid sequencing analysis of the rLGMA showed that it was Met-Gln-Leu-Ala-Ala-Leu-, which was the same as that of genuine protein, meaning the signal peptide was efficiently cleaved during secretion to the extracellular milieu. The optimal reaction temperature and pH of rLGMA ($55^{\circ}C$ and pH 5, respectively) and enzymatic hydrolysis patterns on various substrates (${\beta}$-cyclodextrin, starch, and pullulan) supported that rLGMA was not only efficiently secreted from the Lactococcus lactis MG1363 but was also functionally active. Finally, the branched maltooligosaccharides were effectively produced from liquefied com starch, by using rLGMA secreted from Lactococcus lactis, with a yield of 53.1%.

Palmitoylpolysaccharide-coated Liposomes As A Potential Oral Drug Carrier (경구용 약물수송체로서의 팔미토일 치환 다당체로 코팅된 리포좀)

  • Hahn, Yang-Hee;Yi, Jung-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • Applications of liposomes as a drug carrier for the oral delivery of poorly-absorbable macromolecular drugs have been limited, because of their instability in gastrointestinal environments including pH, bile salts, and digestive enzymes. Two polysaccharides, dextran(DX) and pullulan(PL), were introduced to the preformed liposomes in order to enhance the stability. Palmitoyl derivatives of polysaccharides, palmitoyldextran(PalDX) and palmitoylpullulan(PalPL), were synthesizd and introduced to the liposomes during preparation for the same purpose of stability. The effects of these polysaccharides coating were evaluated basically by physical properties of particle size distribution and optical microscopy, then compared with uncoated liposomes by the observations of both in vitro stability and in vovo absorption characteristics. The geometric mean diameters of polysaccharide-coated liposomes were greater than that of uncoated liposome, showing the outermost polysaccharide-coated layer under the optical microscopy. In vitro stabilities of uncoated or polysaccharides-coated liposomes were measured by turbidity changes in various pH buffer solutions containing sodium choleate as bile salts. While uncoated liposome was very sensitive to bile salts, polysaccharides-coated liposomes were stable in relatively higher concentrations of sodium choleate, giving the results of better stability of PalDX- and PalPL-coated liposomes than that of DX- and PL-coated liposomes. After liposomal encapsulation of acyclovir(ACV), an antiviral agent as a model drug, it has been administered orally to rats as dose of ACV 40 mg/kg. Plasma concentrations of ACV were assayed by HPLC and analyzed by model-independent pharmacokinetics. Pharmacokinetic parameters of Cmax, tmax, and [AUC] have been compared.

  • PDF

Enzymatic production of Fructo-oligosaccharides from Sucrose (자당으로부터 프럭토올리고당의 효소적 생산 연구)

  • 신형태;백순용;이수원;서동상;권석태;김종남;임유범;이재흥
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.555-559
    • /
    • 2002
  • Three different strains of Aureobasidium pullulans were grown in batch cultures to compare their abilities of enzyme production. It was found that specific enzyme activity was the highest with strain ATCC 9348 and the enzyme production was closely coupled to growth. Studies on morphology during the growth of A. pullulans revealed that mycelia cells were dominant at the initial stages of growth. However, yeast-like cells and chlamydospores were dominant in the latter stages of batch culture. The pattern of morphological changes during the growth period was not affected by pH. However, it appears that the ratio of intra- to extracellular enzyme activity tended to increase with fermentation time irrespective of the pH employed, suggesting that the secretion efficiency of intracellular enzyme to broth likely depends on cell morphology Using molasses as a cheap source of sucrose, enzymatic production of fructo-oligosaccharides as a feed additive with A. pullulans cells could be achieved successfully at 55$\^{C}$ and pH 5.5.

Isolation and Identification of Wild Yeasts from Freshwaters and Soils of Nakdong and Yeongsan River, Korea, with Characterization of Two Unrecorded Yeasts (낙동강과 영산강 담수와 주변 토양으로부터 야생효모의 분리 및 동정)

  • Han, Sang-Min;Kim, Ha-Kun;Lee, Hyang-Burm;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.350-354
    • /
    • 2016
  • Diverse wild yeast were isolated from freshwaters and soils of Nakdong and Yeongsan rivers in Korea and identified by the comparison of polymerase chain reaction-amplified nucleotide sequences of the internal transcribed spacer region (including the 5.8S rRNA) and D1/D2 regions of 26S rDNA, using BLAST. In total, 15 strains belonging to 9 species were isolated from 25 samples, out of which Aureobasidium pullulans and Cryptococcus bestiolae were dominant. Candida ghanaensis JSF0127 and Meira geulakonigii JSF0130 were identified as unrecorded yeasts, for which their mycological characteristics were investigated. These unrecorded yeasts formed ascospores and grew in yeast extract peptone dextrose medium containing 5% NaCl.