Browse > Article

Extracellular Secretion of a Maltogenic Amylase from Lactobacillus gasseri ATCC33323 in Lactococcus lactis MG1363 and its Application on the Production of Branched Maltooligosaccharides  

Cho, Mee-Hyun (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
Park, Sang-Eun (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
Lee, Myung-Hun (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
Ha, Suk-Jin (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
Kim, Hae-Yeong (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
Kim, Myo-Jeong (Department of Food Science and Biotechnology, University of Inje)
Lee, Sung-Joon (Division of Food Science, College of Life Science & Biotechnology, Korea University, and Institute of Biomedical Science & Food Safety)
Madsen, Soren M. (Bioneer A/S)
Park, Cheon-Seok (Department of Food Science & Biotechnology and Institute of Life Science & Resources, KyungHee University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1521-1526 More about this Journal
Abstract
A maltogenic amylase gene from Lactobacillus gasseri ATCC33323 (LGMA) was expressed in Lactococcus lactis MG1363 using the P170 expression system. The successful production of recombinant LGMA (rLGMA) was confirmed by the catalytic activity of the enzyme in liquid and solid media. The N-terminal amino acid sequencing analysis of the rLGMA showed that it was Met-Gln-Leu-Ala-Ala-Leu-, which was the same as that of genuine protein, meaning the signal peptide was efficiently cleaved during secretion to the extracellular milieu. The optimal reaction temperature and pH of rLGMA ($55^{\circ}C$ and pH 5, respectively) and enzymatic hydrolysis patterns on various substrates (${\beta}$-cyclodextrin, starch, and pullulan) supported that rLGMA was not only efficiently secreted from the Lactococcus lactis MG1363 but was also functionally active. Finally, the branched maltooligosaccharides were effectively produced from liquefied com starch, by using rLGMA secreted from Lactococcus lactis, with a yield of 53.1%.
Keywords
Branched oligosaccharides; lactic acid bacteria; Lactobacillus gasseri; Lactococcus lactis; maltogenic amylase;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Aires, K. A., A. M. Cianciarullo, S. M. Carneiro, L. L. Villa, E. Boccardo, G. Perez-Martinez, I. Perez-Arellano, M. L. Oliveira, and P. L. Ho. 2006. Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl. Environ. Microbiol. 72: 745-752   DOI   ScienceOn
2 Bredmose. L., S. M. Madsen, A. Vrang, P. Ravn, M. G. Johnsen, J. Glenting, J. Arnau, and H. Israelsen. 2001. Development of a heterologous gene expression system for use in Lactococcus lactis, pp. 269-275. In O.-W. Merten et. al. (eds.), Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Kluwer Academic Press, Dordrecht, The Netherlands
3 Oh, K. W., M. J. Kim, H. Y. Kim, B. Y. Kim, M. Y. Baik, J. H. Auh, and C. S. Park. 2005. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol. Lett. 252: 175-181   DOI   ScienceOn
4 Reid, G., J. Jass, M. T. Sebulsky, and J. K. McCormick. 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16: 658-672   DOI   ScienceOn
5 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
6 Yang, S. J., H. S. Lee, C. S. Park, Y. R. Kim, T. W. Moon, and K. H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995   DOI   ScienceOn
7 Lee, H. S., J. H. Auh, H. G. Yoon, M. J. Kim, J. H. Park, S. S. Hong, M. H. Kang, T. J. Kim, T. W. Moon, J. W. Kim, and K. H. Park. 2002. Cooperative action of $\alpha$-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production. J. Agric. Food Chem. 50: 2812-2817   DOI   ScienceOn
8 Ravn, P., J. Arnau, S. M. Madsen, A. Vrang, and H. Israelsen. 2003. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 14: 2193-2201
9 Dieye, Y., S. Usai, F. Clier, A. Gruss, and J. C. Piard. 2001. Design of a protein-targeting system for lactic acid bacteria. J. Bacteriol. 183: 4157-4166   DOI   ScienceOn
10 Gasson, M. J. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9
11 Kim, S. J., D. Y. Jun, C. H. Yang, and Y. H. Kim. 2006. Cloning and expression of hpaA gene of Korean strain Helicobacter pylori K51 in oral vaccine delivery vehicle Lactococcus lactis subsp. lactis MG1363. J. Microbiol. Biotechnol. 16: 318-324   과학기술학회마을
12 Holo, H. and I. F. Nes. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123
13 Terzaghi, B. E. and W. E. Sandine. 1975. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29: 807-813
14 Park, K. H., T. J. Kim, T. K. Cheong, J. W. Kim, B. H. Oh, and B. Svensson. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the $\alpha$-amylase family. Biochim. Biophys. Acta 1478: 165-185   DOI   ScienceOn
15 Saxelin, M., S. Tynkkynen, T. Mattila-Sandholm, and W. M. de Vos. 2005. Probiotic and other functional microbes: From markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211   DOI   ScienceOn
16 Crittenden, R. G. and M. J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-360   DOI   ScienceOn
17 Konings, W. N., J. Kok, O. P. Kuipers, and B. Poolman. 2000. Lactic acid bacteria: The bugs of the new millennium. Curr. Opin. Microbiol. 3: 276-282   DOI   ScienceOn
18 Loir, Y. L., V. Azevedo, S. C. Oliveira, D. A. Freitas, A. Miyoshi, L. G. Bermudez-Humaran, S. Nouaille, L. A. Ribeiro, S. Leclercq, J. E. Gabriel, V. D. Guimaraes, M. N. Oliveira, C. Charlier, M. Gautier, and P. Langella. 2005. Protein secretion in Lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4: 1-13   DOI   ScienceOn
19 Lin, D. C. 2003. Probiotics as functional foods. Nutr. Clin. Pract. 18: 497-506   DOI   ScienceOn
20 Parvez, S., K. A. Malik, S. A. Kang, and H. Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185   DOI   ScienceOn
21 Kim, J. W., H. J. Cha, T. K. Cheong, and K. H. Park. 1997. Molecular and enzymatic properties of novel maltogenic amylases capable of producing branched oligosaccharides (BOS). Food Sci. Biotechnol. 6: 67-73
22 Lee, H. M. and Y. H. Lee. 2006. Isolation of Lactobacillus plantarum from kimchi and its inhibitory activity on the adherence and growth of Helicobacter pylori. J. Microbiol. Biotechnol. 16: 1513-1517   과학기술학회마을
23 Miller, C. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
24 Jeong, D. W., J. H. Lee, K. H. Kim, and H. J. Lee. 2006. Development of a food-grade integration vector for heterologous gene expression and protein secretion in Lactococcus lactis. J. Microbiol. Biotechnol. 16: 1799-1808   과학기술학회마을
25 Madsen, S. M., J. Arnau, A. Vrang, M. Givskov, and H. Israelsen. 1999. Molecular characterization of the pHinducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol. Microbiol. 32: 75-87   DOI   ScienceOn
26 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
27 Hur, H. J., K. W. Lee, H. Y. Kim, D. K. Chung, and H. J. Lee. 2006. In vitro immunopotentiating activities of cellular fractions of lactic acid bacteria isolated from kimchi and bifidobacteria. J. Microbiol. Biotechnol. 16: 661-666   과학기술학회마을
28 Grajek, W., A. Olejnik, and A. Sip. 2005. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim. Pol. 52: 665-671