Enzymatic production of Fructo-oligosaccharides from Sucrose

자당으로부터 프럭토올리고당의 효소적 생산 연구

  • 신형태 (성균관대학교 생명공학부) ;
  • 백순용 (성균관대학교 생명공학부) ;
  • 이수원 (성균관대학교 생명공학부) ;
  • 서동상 (성균관대학교 생명공학부) ;
  • 권석태 (성균관대학교 생명공학부) ;
  • 김종남 (성균관대학교 생명공학부) ;
  • 임유범 ((주)넬 바이오텍) ;
  • 이재흥 (성균관대학교 생명공학연구소)
  • Published : 2002.12.01

Abstract

Three different strains of Aureobasidium pullulans were grown in batch cultures to compare their abilities of enzyme production. It was found that specific enzyme activity was the highest with strain ATCC 9348 and the enzyme production was closely coupled to growth. Studies on morphology during the growth of A. pullulans revealed that mycelia cells were dominant at the initial stages of growth. However, yeast-like cells and chlamydospores were dominant in the latter stages of batch culture. The pattern of morphological changes during the growth period was not affected by pH. However, it appears that the ratio of intra- to extracellular enzyme activity tended to increase with fermentation time irrespective of the pH employed, suggesting that the secretion efficiency of intracellular enzyme to broth likely depends on cell morphology Using molasses as a cheap source of sucrose, enzymatic production of fructo-oligosaccharides as a feed additive with A. pullulans cells could be achieved successfully at 55$\^{C}$ and pH 5.5.

프럭토올리고당 합성효소의 생산능력이 우수한 균주를 선발하기 위하여 Aureobasidium pullulan 3종을 배양하여 비교해본 결과 ATCC 9348이 비효소활성 측면에서 가장 우수했으며, 세 균주 모두 균체성장과 효소생산패턴과는 대체적으로 선형적인 관계가 있었다. 균의 형태학적 측면에서 볼 때 배양초기에는 대부분 mycelia cells 형태이었으나 배양이 점차 진행되면서 yeast-like cells 및 chlamydospores 형태로 바뀌었고, 이러한 형태변화와 더불어 균체외효소에 대한 균체내효소의 활성비율도 변화됨을 알 수 있었다. 2.5-L 발효조를 사용하여 pH 영향을 조사해본 결과 pH 7.0 범위에서 효소생산이 최대로 나타났고 pH 4.0 또는 pH 8.0 조건에서는 균체외효소에 대한 균체내효소 활성이 높게 나타나는 것으로 보아 배양조건에 따라 효소의 배출효율이 달라지는 것을 알 수 있었다. 또한 값싼 원료인 당밀로부터 A. pullulans 효소를 사용하여 사료첨가제로서의 프럭토올리고당 생산이 가능함을 확인하였다.

Keywords

References

  1. J. Nutr. v.125 Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics Gibson,G.R.;M.B.Roberfroid
  2. Nippon Nogeikagaku Kaishi v.61 Industrial Production of Fructooligosaccharides and Its Application for Human and Animals Hidaka,H.;T.Eida;T.Adachi;Y.Saitoh https://doi.org/10.1271/nogeikagaku1924.61.951
  3. Food Technol. v.48 Safety and Benefits of Fructooligosaccharides as Food Ingredients Spiegel,J.E.;R.Rose;P.Karabell;V.H.Frankos;D.F.Schmitt
  4. Bifido. Microflora v.7 Effect of Isomalto-oligosaccharides on Human Fecal Flora Kohmoto,T.;F.Fukui;H.Takaku;Y.Machida;M.Arai;T.Mitsuoka https://doi.org/10.12938/bifidus1982.7.2_61
  5. Asian-Aust. J. Anim.Sci. v.14 Influence of Dietary Oligosaccharides on Growth Performance and Intestinal Microbial Populations of Piglets Shi,B.M.;S.Shan;J.M.Tong https://doi.org/10.5713/ajas.2001.747
  6. Feed International v.21 Starter Pig Feeds: Oligosaccharides Best,P.
  7. Agric. Biol. Chem. v.52 A Fructooligosaccharide-producing Enzyme from Aspergillus niger ATCC 20611 Hidaka,H.;M.Hirayama;N.Sumi https://doi.org/10.1271/bbb1961.52.1181
  8. Agric. Biol. Chem. v.53 Purification and Properties of a Fructooligosaccharied-producing β-Fructofuranosidase from Aspergillus niger ATCC 20611 Hirayama,M.;N.Sumi;H.Hidaka https://doi.org/10.1271/bbb1961.53.667
  9. US Patent 4,309,505 Process for the Production of Fructose Transferase Enzyme Smith,J.A.;S.J.Luenser
  10. Appl. Biochem. Biotechnol. v.24;25 Semibatch Production of Fructo-oligosaccharides from Sucrose by Immobilized Cells of Aureobasidium Pullulans Yun,J.W.;K.H.Jung;J.W.Oh;J.H.Lee
  11. J. Bacteriol. v.180 Production of 1-Kestose in Transgenic Yeast Expressing a Fructosyltransferase from Aspergillus foetidus Rehrn,J.;L.Wilimizer;A.G.Heyer
  12. Biosci. Biotechnol. Biochem. v.65 Molecular Cloning and Characterization of the Fructooligosaccharide Producing β-Fructofuranosidase Gene from Aspergillus niger ATCC 20611 Yanai,K.;A.Nakane;A.Kawate;M.Hirayama https://doi.org/10.1271/bbb.65.766
  13. Anal. Chem. v.31 Use of Dinitrosalicylic Acid Regent for Determination of Reducing Sugar Miller,G.L. https://doi.org/10.1021/ac60147a030
  14. J. Biol. Chem. v.202 A Microcolorimetric Method for the Determination of Inorganic Phosphorus Taussky,H.H.;E.Shorr
  15. J. Microbiol. Biotechnol. v.12 Display of Bacillus macerans Cyclodextrin Glucanotransferase on Cell Surface of Saccharomyces cerevisiae Kim,K.Y.;M.D.Kim;N.S.Han;J.H.Seo
  16. Enzyme Microb. Technol. v.11 Mathematical Model for Enzymatic Production of Fructo-oligosaccharides from Sucrose Jung,K.H.;J.W.Yun;K.R.Kang;J.Y.Lim;J.H.Lee https://doi.org/10.1016/0141-0229(89)90029-X
  17. J. Ferment. Bioeng. (P.glabrum) v.72 Production of β-Fructofuranosidase Showing Fructose-transferring Activity by Penicillium frequentans Usami,S.;T.Ishii;K.Kirimura;K.Uehara;J.Chen https://doi.org/10.1016/0922-338X(91)90169-H
  18. J. Indust. Microbiol. v.5 Production of a Fructosyltransferring Enzyme by Aureobasidium sp. ATCC 20524 Hayashi,S.;M.Nonokuchi;K.Imada;H.Ueno https://doi.org/10.1007/BF01578099
  19. Biotechnol. Lett. v.9 Production of Fructosyltransferase from Aureobasidium pullulans Jung,K.H.;J.Y.Lim;S.J.Yoo;J.H.Lee;M.Y.Yoo https://doi.org/10.1007/BF01024601
  20. Biotechnol. Bioeng. v.51 A Self-turning Vision System for Monitoring Biotechnological Processes. Ⅰ.Application to Production of Pullulan by Aureobasidium pullulans Guterman,H.;Y.Shabtai https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<501::AID-BIT1>3.3.CO;2-Q
  21. J. Microbiol. Biotechnol. v.12 Effect of High Molecular Weight Pullulan by Aureobasidium pullulans Lee,J.H.;J.H.Kim;M.R.Kim;S.M.Lim;S.W.Nam.;J.W.Lee;S.K.Kim
  22. Word J. Microbiol. Biotechnol. v.8 Purification and Properties of β-Fructofuranosidase from Aspergillus japonicus Hayashi,S.;K.matsuzaki;Y.Takasaki;H.Ueno;K.Imada https://doi.org/10.1007/BF01201878
  23. J. Ind. Microbiol. v.7 Purification and Properties of β-Fructpfirampsodase from Aureobasidium sp. ATCC 20524 Hayashi,S.;M.Nonokuchi;Y.Takasaki;H.Ueno;K.Imada