Browse > Article

Purification and Characterization of Branching Specificity of a Novel Extracellular Amylolytic Enzyme from Marine Hyperthermophilic Rhodothermus marinus  

Yoon, Seong-Ae (Center for Agricultural Biomaterials, Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University)
Ryu, Soo-In (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Lee, Soo-Bok (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Moon, Tae-Wha (Center for Agricultural Biomaterials, Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 457-464 More about this Journal
Abstract
An extracellular enzyme (RMEBE) possessing ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferring activity was purified to homogeneity from Rhodothermus marin us by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex-200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at $80^{\circ}C$. Its half-life was determined to be 73.7 and 16.7 min at 80 and $85^{\circ}C$, respectively. The enzyme was also halophilic and highly halotolerant up to about 2M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial ${\alpha}-(1{\rightarrow}4)$-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferase activity for small maltooligosaccharides, producing disproportionated ${\alpha}-(1{\rightarrow}6)$-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.
Keywords
Rhodothermus marinus; extracellular enzyme; hyperthermophilic enzyme${\alpha}-(1{\rightarrow}6)$-branching activity; branched maltooligosaccharides;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Alfredsson, G. A., J. K. Kristjansson, S. Hjorleifsdottir, and K. O. Stetter. 1988. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol. 134: 299-306
2 Bjornsdottir, S. H., T. Blondal, G. O. Hreggvidsson, G. Eggertsson, S. Petursdottir, S. Hjorleifsdottir, S. H. Thorbjarnardottir, and J. K. Kristjansson. 2006. Rhodothermus marinus: Physiology and molecular biology. Extremophiles 10: 1-16
3 Halldorsdottir, S., E. T. Thorolfsdottir, R. Spilliaert, M. Johansson, S. H. Thorbjarnardottir, A. Palsdottir, G. O. Hreggvidsson, J. K. Kristjansson, O. Holst, and G. Effertsson. 1998. Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl. Microbiol. Biotechnol. 49: 277-284   DOI   ScienceOn
4 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
5 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.
6 Vinogradov, E. and K. Bock. 1998. Structural determination of some new oligosaccharides and analysis of the branching pattern of isomaltooligosaccharides from beer. Carbohydr. Res. 309: 57-64   DOI   ScienceOn
7 Van, T. T. K., S.-I. Ryu, K.-J. Lee, E.-J. Kim, and S.-B. Lee. 2007. Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J. Microbiol. Biotechnol. 17: 792-799   과학기술학회마을
8 Yang, S.-J., H.-S. Lee, C.-S. Park, Y.-R. Kim, T.-W. Moon, and K.-H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995   DOI   ScienceOn
9 Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826-1831   과학기술학회마을
10 Kuriki, T., M. Yanase, H. Takata, Y. Takesada, T. Imanaka, and S. Okada. 1993. A new way of producing isomaltooligosaccharide syrup by using the transglycosylation reaction of neopullulanase. Appl. Environ. Microbiol. 59: 953-959
11 Hobel, C. F. V., G. O. Hreggvidsson, V. T. Marteinsson, F. Bahrani-Mougeout, J. M. Einarsson, and J. K. Kristjansson. 2005. Cloning, expression and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 9: 53-64   DOI   ScienceOn
12 Nunes, O. C., M. M. Donato, and M. M. da Costa. 1992. Isolation and characterization of Rhodothermus strains from S-miguel, Azores. Syst. Appl. Microbiol. 15: 92-97
13 Cho, H.-Y., Y.-W. Kim, T.-J. Kim, H.-S. Lee, D.-Y. Kim, J.-W. Kim, Y.-W. Lee, S.-B. Lee, and K.-H. Park. 2000. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta 1478: 333-340   DOI   ScienceOn
14 Park, N.-Y., J. Cha, D.-O. Kim, and C.-S. Park. 2007. Enzymatic characterization and substrate specificity of thermostable $\beta$-glycosidase from hyperthermophilic archaea, Sulfolobus shibatae, expressed in E. coli. J. Microbiol. Biotechnol. 17: 454-460   과학기술학회마을
15 Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
16 Silva, Z., C. Horta, M. S. da Costa, A. P. Chung, and F. A. Rainey. 2000. Polyphasic evidence for the reclassification of Rhodothermus obamensis Sako et al. 1996 as a member of the species Rhodothermus marinus Alfredsson et al. 1988. Int. J. Syst. Evol. Microbiol. 50: 1457-1461   DOI   ScienceOn
17 Gomes, I., J. Gomes, and W. Steiner. 2003. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: Production and partial characterization. Bioresource Technol. 90: 207-214   DOI   ScienceOn
18 Park, J.-H., K.-H. Park, and J.-L. Jane. 2007. Physicochemical properties of enzymatically modified maize starch using 4-$\alpha$-glucanotransferase. Food Sci. Biotechnol. 16: 902-909   과학기술학회마을
19 Fang, T. Y., W.-C. Tseng, C.-J. Yu, and T.-Y. Shih. 2005. Characterization of the thermophilic isoamylase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. Mol. Catal. B Enzym. 33: 99-107   DOI   ScienceOn
20 Tonozuka, T., S. Mogi, Y. Shimura, A. Ibuka, H. Sakai, H. Matsuzawa, Y. Sakano, and T. Ohta. 1995. Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing $\alpha$-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim. Biophys. Acta 1252: 35-42   DOI   ScienceOn
21 Murakami, T., T. Kanai, H. Takata, T. Kuriki, and T. Imanaka. 2006. A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 188: 5915-5924   DOI   ScienceOn
22 Van der Maarel, M. J. E. C., A. Vos, P. Sanders, and L. Dkjkhuizen. 2003. Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus. Biocatal. Biotransform. 21: 199-207   DOI
23 Park, N.-Y., N.-I. Baek, J. Cha, S.-B. Lee, J.-H. Auh, and C.-S. Park. 2005. Production of new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae $\beta$-glycosidase. Carbohydr. Res. 340: 1089-1096   DOI   ScienceOn
24 Spilliaert, R., G. O. Hreggvidsson, J. K. Kristjansson, G. Effertsson, and A. Palsdottir. 1994. Cloning and sequencing of a Rhodothermus marinus gene, BglA, coding for a thermostable beta-glucanase and its expression in Escherichia coli. Eur. J. Biochem. 224: 923-930   DOI   ScienceOn
25 Guan, H., P. Li, J. Imparl-Radesevich, J. Preiss, and P. Keeling. 1997. Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch. Biochem. Biophys. 342: 92-98   DOI   ScienceOn
26 Nordberg, K. E., E. Bartonek-Roxa, and O. Holst. 1997. Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim. Biophys. Acta 1353: 118-124   DOI   ScienceOn
27 Shinohara, M. L., M. Ihara, M. Abo, M. Hashida, S. Takagi, and T. C. Beck. 2001. A novel thermostable branching enzyme from an extremely thermophilic bacterial species, Rhodothermus obamensis. Appl. Microbiol. Biotechnol. 57: 653-659   DOI   ScienceOn