• Title/Summary/Keyword: public key cryptography

Search Result 241, Processing Time 0.022 seconds

Elliptic Curve Cryptography Algorithms for IC Card (IC 카드용 타원곡선 암호 알고리즘)

  • 이택희;서창호;김영철;이태훈;윤보현
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • This paper describes implementations and test results of Elliptic Curve Cryptography (ECC) and Elliptic Curve KCDSA(ECKCDSA) algorithms based on Java card. 163-Bit ECC guarantees as secure as 1024-Bit Rivest-Shamir-Adleman (RSA) public key algorithm, which has been frequently used until now. According to our test results, 163-bit ECC processing time is about five times fast compared with 1024-bit RSA and amount of resource usages of ECC is smaller than RSA. Therefore, ECC is more appropriate for use on secure devices such as smart cards and wireless devices with constrained computational power consumption and small memory resources.

ID-Based Group Key Management Protocols for Dynamic Peer Groups (피어 그룹을 위한 ID 기반의 그룹키 관리 프로토콜)

  • Park, Young-Ho;Lee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.922-933
    • /
    • 2004
  • In recent years, peer-to-peer network have a greate deal of attention for distributed computing or collaborative application, and work of ID-based public key systems have been focusing on the area of cryptography. In this paper, we propose ID-based group key management protocols for secure communication in autonomous peer group. Each member obtains his public/private key pair derived from his identification string from Private Key Generator. No central server participates in group key management protocol instead, all group members share the burden of group key management by the collaboration of themselves, so that our scheme avoids the single point of failure problem. In addition, our scheme considers the nature of dynamic peer group such as frequent joining and leaving of a member.

  • PDF

A Study on Image Integrity Verification Based on RSA and Hash Function (RSA와 해시 함수 기반 이미지 무결성 검증에 관한 연구)

  • Woo, Chan-Il;Goo, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.878-883
    • /
    • 2020
  • Cryptographic algorithms are used to prevent the illegal manipulation of data. They are divided into public-key cryptosystems and symmetric-key cryptosystems. Public-key cryptosystems require considerable time for encryption and decryption compared to symmetric-key cryptosystem. On the other hand, key management, and delivery are easier for public-key cryptosystems than symmetric-key cryptosystems because different keys are used for encryption and decryption. Furthermore, hash functions are being used very effectively to verify the integrity of the digital content, as they always generate output with a fixed size using the data of various sizes as input. This paper proposes a method using RSA public-key cryptography and a hash function to determine if a digital image is deformed or not and to detect the manipulated location. In the proposed method, the entire image is divided into several blocks, 64×64 in size. The watermark is then allocated to each block to verify the deformation of the data. When deformation occurs, the manipulated pixel will be divided into smaller 4×4 sub-blocks, and each block will have a watermark to detect the location. The safety of the proposed method depends on the security of the cryptographic algorithm and the hash function.

Efficient Multi-Bit Encryption Scheme Using LWE and LWR (LWE와 LWR을 이용한 효율적인 다중 비트 암호화 기법)

  • Jang, Cho Rong;Seo, Minhye;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1329-1342
    • /
    • 2018
  • Recent advances in quantum computer development have raised the issue of the security of RSA and elliptic curve cryptography, which are widely used. In response, the National Institute of Standards and Technology(NIST) is working on the standardization of public key cryptosystem which is secure in the quantum computing environment. Lattice-based cryptography is a typical post-quantum cryptography(PQC), and various lattice-based cryptographic schemes have been proposed for NIST's PQC standardization contest. Among them, EMBLEM proposed a new multi-bit encryption method which is more intuitive and efficient for encryption and decryption phases than the existing LWE-based encryption schemes. In this paper, we propose a multi-bit encryption scheme with improved efficiency using LWR assumption. In addition, we prove the security of our schemes and analyze the efficiency by comparing with EMBLEM and R.EMBLEM.

HS-Sign: A Security Enhanced UOV Signature Scheme Based on Hyper-Sphere

  • Chen, Jiahui;Tang, Shaohua;Zhang, Xinglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3166-3187
    • /
    • 2017
  • For "generic" multivariate public key cryptography (MPKC) systems, experts believe that the Unbalanced Oil-Vinegar (UOV) scheme is a feasible signature scheme with good efficiency and acceptable security. In this paper, we address two problems that are to find inversion solution of quadratic multivariate equations and find another structure with some random Oil-Oil terms for UOV, then propose a novel signature scheme based on hyper-sphere (HS-Sign for short) which directly answers these two problems. HS-Sign is characterized by its adding Oil-Oil terms and more advantages compared to UOV. On the one side, HS-Sign is based on a new inversion algorithm from hyper-sphere over finite field, and is shown to be a more secure UOV-like scheme. More precisely, according to the security analysis, HS-Sign achieves higher security level, so that it has larger security parameters choice ranges. On the other side, HS-Sign is beneficial from both the key side and computing complexity under the same security level compared to many baseline schemes. To further support our view, we have implemented 5 different attack experiments for the security analysis and we make comparison of our new scheme and the baseline schemes with simulation programs so as to show the efficiencies. The results show that HS-Sign has exponential attack complexity and HS-Sign is competitive with other signature schemes in terms of the length of the message, length of the signature, size of the public key, size of the secret key, signing time and verification time.

Group Key Exchange over Combined Wired and Wireless Networks

  • Nam, Jung-Hyun;Won, Dong-Ho
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.461-474
    • /
    • 2006
  • A group key exchange protocol is a cryptographic primitive that describes how a group of parties communicating over a public network can come up with a common secret key. Due to its significance both in network security and cryptography, the design of secure and efficient group key exchange protocols has attracted many researchers' attention over the years. However, despite all the efforts undertaken, there seems to have been no previous systematic look at the growing problem of key exchange over combined wired and wireless networks which consist of both stationary computers with sufficient computational capabilities and mobile devices with relatively restricted computing resources. In this paper, we present the first group key exchange protocol that is specifically designed to be well suited for this rapidly expanding network environment. Our construction meets simplicity, efficiency, and strong notions of security.

A Short and Efficient Redactable Signature Based on RSA

  • Lim, Seong-An;Lee, Hyang-Sook
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.621-628
    • /
    • 2011
  • The redactable signature scheme was introduced by Johnson and others in 2002 as a mechanism to support disclosing verifiable subdocuments of a signed document. In their paper, a redactable signature based on RSA was presented. In 2009, Nojima and others presented a redactable signature scheme based on RSA. Both schemes are very efficient in terms of storage. However, the schemes need mechanisms to share random prime numbers, which causes huge time consuming computation. Moreover, the public key in the scheme of Johnson and others is designed to be used only once. In this paper, we improve the computational efficiency of these schemes by eliminating the use of a random prime sharing mechanism while sustaining the storage efficiency of them. The size of our signature scheme is the same as that of the standard RSA signature scheme plus the size of the security parameter. In our scheme, the public key can be used multiple times, and more efficient key management than the scheme of Johnson and others is possible. We also prove that the security of our scheme is reduced to the security of the full domain RSA signature scheme.

Efficient Password-based Key Exchange Protocol for Two users Registered in a Server (동일 서버를 사용하는 두 사용자간 효율적인 패스워드 기반의 키 교환 프로토콜)

  • Shin Seong-chul;Lee Sung-woon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.127-133
    • /
    • 2005
  • This paper presents a password-based key exchange protocol to guarantee secure communications for two users registered in a sever. In this protocol, the server is only responsible for the legality of the users but does not how the session key agreed between them. The protocol can resist the various attacks including server compromise attack and provide the perfect forward secrecy. The proposed protocol is efficient in terms of computation cost because of not employing the sewer's public key.

Asymmetric Watermarking Using Public Key Infrastructure (공개키 기반 구조를 이용한 비대칭 워터마킹)

  • Jun Young-Min;Yang Sun-Ouk;Kim Gye-Young
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1282-1293
    • /
    • 2004
  • This paper proposes an asymmetric watermarking system using Public Key Infrastructure. The distinguishing characteristic of the proposed method connects between the two different techniques, cryptography technique and watermarking technique, by using the authentication technique. The connection between the two techniques are established based on the special qualities of each technique. Watermarks that are inserted into the digital contents consist of a digital signature described as an encrypted copyright information with the private key of a distributor or a copyright holder, and an authentication code. In the situation where the ownership of the digital contents has to be decided, authentication technique examines the data integrity of the digital contents based on an authentication and decides the ownership of the digital contents by examining whether it satisfies or not satisfies the integrity test. The formal case uses decryption method which compares the user defined copyright information, and the decrypted copyright information extracted from the watermark in the digital contents that are decrypted by distributors' public key The latter case determines the ownership by comparing the similarity between encrypted copyright information separated from the watermark that are extracted from the digital contents, and the user defined encrypted copyright information that are separated from the watermark The proposed method provides protection from the assault which attempts to identify or erase the encoding key.

  • PDF

A Security Analysis of a Key Management Scheme for PCS/SCADA Sensor Networks (PCS/SCADA 센서 네트워크용 키 관리 프로토콜에 대한 보안 분석)

  • Park, DongGook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. Recently, Nilsson et al. proposed a key management scheme for PCS/SCADA, which was claimed to provide forward and backward secrecies. In this paper, we define four different types of adversaries or attackers in wireless sensor network environments in order to facilitate the evaluation of protocol strength. We then analyze Nilsson et al. 's protocol and show that it does not provide forward and backward secrecies against any type of adversary model.