JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006 461

Group Key Exchange over
Combined Wired and Wireless Networks

Junghyun Nam and Dongho Won

Abstract: A group key exchange protocol is a cryptographic prim-
itive that describes how a group of parties communicating over a
public network can come up with a common secret key. Due to
its significance both in network security and cryptography, the de-
sign of secure and efficient group key exchange protocols has at-
tracted many researchers’ attention over the years. However, de-
spite all the efforts undertaken, there seems to have been no previ-
ous systematic look at the growing problem of key exchange over
combined wired and wireless networks which consist of both sta-
tionary computers with sufficient computational capabilities and
mobile devices with relatively restricted computing resources. In
this paper, we present the first group key exchange protocol that
is specifically designed to be well suited for this rapidly expand-
ing network environment. Our construction meets simplicity, effi-
ciency, and strong notions of security.

Index Terms: Combined wired and wireless networks, decisional
Diffie-Hellman (DDH) assumption, group key exchange, mobile de-
vices.

I. INTRODUCTION

The primary goal of cryptography is to provide a means for
communicating confidentially and with integrity over a public
channel. Roughly speaking, confidentiality means that the data
transferred is not disclosed to unauthorized parties, and integrity
means that the transferred data cannot be modified by an unau-
thorized party without being detected. It is well accepted that
the most effective way to achieve the goal is by establishing
a common secret key called session key and then using this
key together with standard cryptographic algorithms for mes-
sage encryption and authentication. Thus, the problem of estab-
lishing confidential and integrity-preserving communication is
commonly reduced to the problem of designing a key exchange
protocol that allows the parties communicating over a public
network to establish a session key. Needless to say, a tremen-
dous amount of research effort has been devoted to the design
and analysis of key exchange protocols in a variety of settings
(e.g., [2]-[6] and their follow-ups).

The first priority in designing a key exchange protocol is
placed on ensuring the security of session keys to be established
in the protocol. Even if it is computationally infeasible to break
the cryptographic algorithms used, the whole system becomes
vulnerable to all manner of attacks if the keys are not securely
established. However, the experience has shown that the design
of secure key exchange protocols is notoriously difficult; there
is a long history of protocols for this domain being proposed
and later found to be flawed (see [7] for a comprehensive list of

Manuscript received April 26, 2006.

The authors are with the School of Information and Communication Engineer-
ing, Sungkyunkwan University, Korea, email: {jhnam, dhwon}@security.re.kr.

A preliminary version of this work was presented in part at TrustBus 2005 [1].

examples). Thus, key exchange protocols must be subjected to
a thorough and systematic scrutiny before they can be deployed
into a public network, which might be controlled by an adver-
sary. This concern has prompted active research on formal mod-
els of security for key exchange [8]-[17], and highlighted the
importance of rigorous security proofs for protocols in a well-
defined model. Although rigorously proving a protocol secure
can often be a lengthy and complicated task, proofs are advo-
cated as invaluable tools for obtaining a high level of assurance
in the security of key exchange protocols [12], [14], [18]-[22].

Efficiency is another important consideration in designing
key exchange protocols. In particular, it may become a criti-
cally practical issue for mobile applications where users may
be resource constrained. Although mobile computing technol-
ogy has become more powerful and accessible than ever before,
there still remains a marked difference in computation resources
between small mobile devices and general-purpose stationary
computers. Mobile devices are typically characterized by low
processing capability and limited power supply [23], which are
inherent in the mobility nature. It is thus necessary that the cost
due to security-related operations should be minimized for mo-
bile devices in such a way that the required security goals are
not compromised. This significantly adds to the challenge of se-
curing communications in wireless networks. In fact despite all
the work conducted over many decades, security is still a ma-
jor limiting factor for the full adoption of mobile devices [22],
[24]-[27].

In this paper, we are interested in key exchange in the group
setting where a session key is to be established among a group
of parties. Protocols for group key exchange are essential in
building secure multicast channels for applications where quite
a large number of users are likely to be involved (e.g., video con-
ferencing and massive online gaming). As these group-oriented
applications proliferate in modern cemputing environments, re-
search on group key exchange has received much attention in
recent years (a very partial list of recent work includes [12],
[15], [19], [20], [28]-[44]). The efficiency of group key ex-
change protocols is measured with respect to computation over-
head, as well as communication overhead. Computation over-
head is mostly concerned with the number of public-key cryp-
tographic operations that users have to perform, while commu-
nication overhead is usually quantified as both the number of
rounds of communication among users and the number of mes-
sages sent/received by users (see [45] for some results on com-
munication complexity of group key exchange). In particular for
a group key exchange protocol to be scalable, it is of prime im-
portance in many real-life applications that the protocol should
be able to run in a constant number of communication rounds.

The goal of this work is to present a solution to the prob-
lem of group key exchange over combined wired and wireless

1229-2370/06/$10.00 (© 2006 KICS

462

networks, which consist of both low performance mobile de-
vices with some form of battery power and high performance
stationary computers with no power constraint. When one con-
siders the broad range of wirelessly connected mobile devices
used today, it is clear that integrating such network-enabled de-
vices into secure group communication systems is timely ard
will be increasingly important. While a number of problems re-
lated to group key exchange have been tackled and solved over
the past years, there seems to have been no previous system-
atic look at the growing problem of group.key exchange over
combined wired and wireless networks. Indeed, most previous
group key exchange protocols are not well suited for network
environments similar to our setting. Even though some constant-
round protocols have been proposed [20], [36], [40], [41], [4€],
they are still too costly to be practical for applications involving
mobile devices with limited computing resources. The reason
for this is that these protocols are fully symmetric and there-
fore, as group size grows, the workload of every user also in-
creases substantially, imposing an unfair, excessive burden on
small mobile devices. On the other hand, other constant-round
protocols [34],! [39], [42], [47] are extremely asymmetric and
thus also are not efficiently applicable in our network setting;
in these protocols one or two special users must perform O(n)
public-key cryptographic operations in a group of size n, being a
significant performance bottleneck in a large group setting. It is
these observations that prompted the present work aimed at de-
signing a group key exchange protocol well suited for combined
wired and wireless networks.

In this work, we concentrate on contributory key exchange
protocols in which the session key is derived as a function of
contributions provided by all parties. In contributory key ex-
change protocols, a correctly behaving party is assured that as
long as his contribution is chosen at random, even a coalition of
all other parties will not be able to have any means of control-
ling the final value of the session key. Thus, the use of contrib-
utory key exchange protocols is often recommended to prevent
some parties having any kind of advantage over the others [28],
[48]. Note that the well-known group key distribution protocols
from [49]-[51] are not contributory. Furthermore, these non-
contributory protocols, while they focus on minimizing the cost
of the rekeying operations associated with group updates, lack
at least one of the important security properties: Perfect forward
secrecy [52] or known key‘security [53] (see below for descrip-
tions of these properties).

Our contribution is to present the first constant-round group
key exchange protocol that is well suited for the combined wirecd
and wireless networks. The key feature of our approach is that it
avoids any potential performance bottleneck of the system while
keeping the burden on low power users at minimal, by evenly
spreading most of workload across high power users. This fea-
ture enables to distinguish our protocol from all other constant-
round protocols [20], [34], [36], [39]-[42], [46], [47] in that
the maximum amount of computation to be done by any single
user is bounded by O(y/n) in our protocol whereas this amount
per user rises up to O(n) in the other protocols. Thus, if we
define the computational complexity of a protocol as the maxi-

1we refer to [22] for a security enhancement to the protocol of [34].

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006

mum computation rate per user in the protocol,? our result may
be regarded as the first constant-round protocol that has compu-
tational complexity lower than O(n) (see Section II-D for more
details on the efficiency of our protocol). In addition, the num-
ber of major cryptographic operations to be performed by each
mobile user in our protocol remains low and constant without re-
spect to the number of participants. This represents a key differ-
ence between our protoco! and the well-known fully-symmetric
protocols [20], [36], [40], [41], [46] where the computational
load on each user scales linearly as the group size grows.

As stated already, proofs are invaluable for getting secure
protocols. Our protocol is provably secure against a passive ad-
versary under the decisional Diffie-Hellman (DDH) assumption
(see Section III-C for definition of the DDH assumption). We
provide a rigorous proof of security for the proposed protocol
in the framework of a well-defined formal model. Our security
proof of course captures important security notions of (1) per-
fect forward secrecy and (2) known key security. It is thus guar-
anteed in our protocol that: (1) Disclosure of long-term secret
information does not compromise the security of previously es-
tablished session keys and (2) exposure of some session keys
does not affect the security of other session keys.

The remainder of this paper is organized as follows. In Sec-
tion II, we present our construction of a group key exchange
protocol well suited for combined wired and wireless networks.
Next in Section III, we give some preliminaries required for the
security proof of the proposed protocol, including a communi-
cation and adversary model with an associated definition of se-
curity. Then, in Section IV, we rigorously prove the security of
the protocol against a passive adversary under the DDH assump-
tion. Finally, Section V concludes this work.

II. THE PROPOSED PROTOCOL

In this section, we introduce a group key exchange protocol
P-CWWN appropriate for use in combined wired and wireless
networks, where users with resource-constrained mobile devices
and users with high-performance stationary computers coexist
as potential protocol participants. The protocol P-CWWN con-
sists of two subprotocols: The basic protocol BP and the gener-
alized protocol GP. The basic protocol BP is designed for use in
the extreme case where the number of high power users partici-
pating in P-CWWN is only one or two. The generalized protocol
GP is intended for use in the more general and interesting case
where there are more than two high power users. We first con-
struct the basic protocol BP for the extreme case and then extend
it to construct the generalized protocol GP. As we shall see later
in Section IV, both of the protocols BP and GP are provably
secure against a passive adversary under the DDH assumption.

A. Setup

Let G be a nonempty set of n users who wish to establish
a common session key by participating in the group key ex-
change protocol P-CWWN. We divide this set G of protocol
participants into two disjoint subsets S and R, i.e., § = SUR,
where § = {Uy,---,Uy,,} is the nonempty set of users with

21n fact, this definition is also used in the full version of [20] which is available
athttp://eprint.iacr.org/2003/171.

NAM AND WON: GROUP KEY EXCHANGE OVER COMBINED WIRED AND WIRELESS NETWORKS 463

byns=1lorns =2

Fig.1. 6=SUR, S={Uy, -, Un,},and R = {Un, 41, -, Un}

stationary computers that have sufficient computational capabil-
ities and R = {Uy, 41,---,Uy,} is the set of users with mo-
bile devices that have relatively restricted computing resources.
As stated in the Introduction, the design goal of our protocol is
to evenly spread most of workload across the high power users
while keeping the computational burden on low power users at
minimal. Towards the goal, we arrange the users in a tree struc-
ture with height 2 according to their computing power as de-
picted in Fig. 1(a). All users in R are at leaves in the tree while
the users in & could be at any level in the hierarchy from 0 to
2. In our protocol, the amount of computation to be done by
a user at an internal node scales linearly with the number of
children of the user, while the users at leaf nodes perform only
a constant amount of computation (except for multiplication).
Accordingly, minimizing the maximum number of children of a
user corresponds to minimizing the maximum amount of com-
putation to be done by any single user, and therefore avoiding
any potential performance bottleneck in the protocol.

The maximum number of children of a user depends on the
number of users at level 1, which we denote by m. To see this,
assume a fixed number n of users to be arranged in the tree of
Fig. 1(a). If we increase the value of m, the number of U;’s
children increases while the average number of children of each
user at level 1 decreases. If instead we decrease the value of
m, the average number of children per user at level 1 increases
while the number of U;’s children decreases. So to minimize
the maximum amount of computation to be performed by any
single user, it is important to choose the value of m carefully.

Let n, denote the cardinality of R (i.e., n = n, + n,.). Given
ns and n,, we can derive an optimal value of m as follows:

0, ifng=1lorn, =2
ns—1, ifng;>2andn, > (n,—1)(ns —2)

l[vn—1J, otherwise.

Fig. 1(b) shows one extreme case where m = 0 (i.e., ns = 1 or
ns = 2) and thus, the users are organized into an (n — 1)-ary
tree with height 1. In this case, we place one userin S at the root
node of the tree and all other users in G at leaf nodes. Conse-
quently, much of the computational burden is shifted to the root
user who has sufficient computing power. The case n, > 2 is di-
vided into two subcases, depending on whether 72, is no less than
(ns — 1)(ns — 2) or not. In the subcase n, > (ns — 1)(n; — 2),
the value of m is set to the value of n; — 1. Namely, all the n, —1
high power users are placed at level 1 if n, is large enough so
that at least (ns — 2) low power users can be assigned as chil-
dren to each of n, — 1 high power users. In the other subcase
nr < (ns — 1)(ns — 2), the value of m is set to the value of
| vVn — 1], meaning that n, — 1 — [/n — 1] high power users
are placed at level 2 instead of at level 1.

Once the value of m is determined as above, the users
Um+2, -+, Uy are placed at level 2 in an obvious way that an
equal number of users (more precisely, [2=2=1] or | 2=m=1
users) are assigned as children to each of the users at level 1.

In describing the protocol, we assume that the following pub-
lic information has been fixed in advance and is known to all
parties in the network: (1) The structure of the tree and the users’
positions within the tree and (2) a finite cyclic group G of prime
order g, where the DDH assumption holds, and a generator g of
G. A standard way of generating G where the DDH assumption
is assumed to hold is to choose two primes p and ¢ such that
p = kq+ 1 for some small k € N (e.g., k = 2) and let G be the
subgroup of order ¢ in Z5. In order to simplify the description
of the protocol, we omit ‘mod p’ from expressions and divide
the set G into three disjoint subsets £y, £;, and £ which denote
the sets of users at levels 0, 1, and 2, respectively.

In this work, we focus on security against passive adversaries
and assume all messages are digitally signed by their source
in a way that the protocols effectively resist active attacks. To
achieve security against active adversaries, one may use the re-
cent result of Katz and Yung [20] where they presented an ef-
ficient one-round compiler that transforms any group key ex-
change protocol secure against a passive adversary into one that
is secure against an active adversary. Indeed, by Theorems 1 and
2 in Section IV, both the subprotocols BP and GP can be easily
converted into group key exchange protocols secure against an
active adversary if we apply the Katz and Yung’s compiler to the
protocols.

B. The Basic Protocol BP

The basic protocol BP is a group key exchange protocol de-
signed to be well suited for the case 0 < n, < 2. Fig. 2 shows
a simple illustrative example of an execution of protocol BP. A
more detailed description of the protocol, on input three sets
Lo ={U1}, L1 ={Us,---,Uy,}, and £y = 0, is as follows:

Round 1: Eachuser U; € £, chooses a random 7; € Zg4, com-
putes z; = g™, and sends z; to its parent U;.
Round 2: User U, first computes the group secret X by per-
forming the following operations:
1. U chooses two random numbers s, r; € Z4 and computes
Ty = g°".
2. Uy computes x; = z{ upon arrival of each z;.

464 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006

Random selections: Uy: s,ry € Zg; U; € Ly:1; € Zyg.

1) Round 1: g™2, g™ g™, ‘
Keying materials: yo = ¢*("1+78+74) g = gs(ritratra),
Y4 = gS(T1+T2+T3).

2) Round 2: ¢°||{y2,¥s, ya}.
Group secret: X = gs(riFratratra),
Sessionkey: K = X - y2 - 3 - y4.

Fig. 2. An execution of the basic protocol BP with G = £y U £1, where
Lo={U1}and £y = {U2,Us,Us}.

3. Using all the z;’s, the group secret X is computed as

X = H ;.

i€l,n)

Then U; generates the public keying material w = ¢° and
Y ={y:|i€[2n]}, wherey; = X -z, ', and sends the
message w||) to its children.

Key computation: Upon receiving w||Y, each user U; € £,
computes the group secret X = y; - w”. Finally, all users
in G compute their session key as

K=X][]

1€[2,n]

It is straightforward to verify that all users compute the same
secret value X = g*("1+r2++71) apd hence the same session
key K.

CONTRIBUTORY PROPERTY. Being contributory is a desirable

property for group key exchange protocols to possess.
Definition 1: A key exchange protocol is said to be contrib-

utory if and only if it satisfies the following two conditions:

1. The session key is derived as a function of contributions
provided by all participants.

2. A correctly behaving participant is assured that as long as
his contribution is chosen at random, even a coalition of
all other participants will not be able to have any means of
controlling the final value of the session key.

The protocol BP is, by Definition 1, contributory. Clearly,
the first condition is satisfied. It is not difficult to see that the
second condition is also satisfied. Although the value of the
common secret X can be predetermined by user U1, the values
of X and y; can never be controlled simultaneously. To see this,
note that as soon as X is set to some specific value, the value of
Y is determined inevitably by the equation y; = X - z; ! That
is, given a fixed value of X, the value of y; jumps around in
G depending on z;. Since all the y;’s are multiplied with X to

derive K, each user can be assured that the distribution of their
session key cannot be biased by any other users.

C. The Generalized Protocol GP

This subsection presents our main construction which uses
the above-described protocol BP as a basic building block. The
idea in constructing GP is to distribute the users into m (= |£1])
subgroups and to run the basic protocol BP for each subgroup.
Each parent U; € £; forms a subgroup G; with its children and
plays a central role in the subgroup. First, each G; generates a
secret subgroup key k; by running the basic protocol BP. After
having derived k;, each subgroup G, participates again in the
protocol BP as a single entity to generate the group key (i.e.,
the session key). In this final run of protocol BP, the subgroup
key k; € G is used as the random exponent r; € Z4 for the
subgroup G;. So we need a function I mapping elements of G
to elements of Z,. For our security proof, we have to assume
that I : G — Zg is a bijection. Whether there are appropriate
bijections from G into Z, depends on the group G. If p is a safe
prime (i.e., p = 2q + 1), then a bijection I can be constructed as

follows:
T
to={,%,

Fig. 3 shows an example of the protocol execution with £, =
{U1}, £1 = {UQ, U3, U4}, and £2 = {Us, tey Ulz}. The fol-
lowing describes the protocol for the general case where £y =
{U1}7 cl = {U27 T Um—i—l}’ and ‘C2 = {Um+2a Yy Un}

Round 1: Each user U; € £L; chooses a random 7; € Z, com-
putes Z; = g7, and sends Z; to its parent in £;.
Round 2: Each user U; € £, first computes the subgroup key
k; to be shared with its children as follows:
1. U; chooses two random numbers §;, 7; € Z, and computes
:ii = ggi;.i. ~
2. U; computes &; = Z;i upon receiving each Z; for j € C,,
where C; is the set of indices of the children of U;.
3. U; calculates the subgroup secret X ;as

Xi= [] #

JeC;u{i}

ife <gq
ifg<z<p.

and the subgroup keying material ; = g% and J; = {{; |
j € Cs}, where §; = X, - &; 1.
4. The subgroup key k; is then computed as

ki = X; H Uy

FEC;

Next, user U; € L1 computes ; = I(k;) and z; = ¢,
and sends the message z;||@; | V; to its children and to the
parent U .
Round 3: User Uy € Ly first computes the group secret X as

follows:

1. U chooses two random numbers s, r; € Z4 and computes
x1 =g,

2. Uy computes z; = 27 forall ¢ € [2,m + 1].

3. Uy calculates the group secret as

M =

i€[t,m+1]

X =

NAM AND WON: GROUP KEY EXCHANGE OVER COMBINED WIRED AND WIRELESS NETWORKS

Random selections: Us: 8,71 € Zg; U; € L1: 83,7 € Zg; U; € Lo: 75 € Zy.

1) Round 1: g5, g™, g™, g™, g™, g"0, g"13, g2,
Subgroup keying materials: ¢5 = Yo =
o = gss(Ta+Ts+7‘10) J10 = 953(7‘3+T8+7"9) yl — gs4(7‘4+7‘12) 10 = gs4(T4+T11)
Subgroup secrets: Xp = g%2(F2+Ts+7etr) X, — gSa(Fatfatfotiin) X, = gia(Fatfintin),

Subgroup keys: k2 = Xo - §s - 6 - 7. k3 = X3 - Js - o - F10. ka = Xa - §11 - §12.
Subgroup random exponents: ro = I(kg), 73 = I(k3), r4a = I(k4).

2) Round 2: g"(|g™* {5, Js, 7} 97 ll9™ [{gs, 9o Gro}s 9" 19 I{51, Trz}.
Group keying materials: yo = ¢5(r1+73474) gy — gs(ritratra)) — gs(ritratrs),

952(524_;64-;7) ~ g§2(fg+1:5+7:7) gy = géz(F2+f5+f~s)’ U8

= ¢% (F3+7F9+710)

465

’

3) Round 3: gsll{y27 Ys, y4}
Group secret: X = g*(r1tratratra)
Session key: K = X - y2 - y3 - y4.

Fig. 3. An execution of the generalized protocol GP with G = Lo U £1 U L2, where Lo = {U1}, £1 = {Uz,Us,Us}, and L2 = {Us,- -+, U12}.

Then, U; computes w = g*and Y = {y; | 7 € [2,m+ 1]},
where y; = X - z;', and sends the message wl|) to the
rest of the group.

Key computation: Now foralli € [2,m+1]andall j € C;, user
U; is able to generate the group secret X by computing, in
sequence, the subgroup secret X, = Yj , the subgroup
key ki = X; Hjeci Y, the subgroup random exponent
r; = I(k;), and then the group secret X = y;-w™. Each U;
in £, can directly calculate the group secret X = y; - w”
using r; obtained already in Round 2. Finally, all users in
G compute the session key K as

K=x][

i€(2,m+1]

The protocol GP given above is contributory for the same rea-
son as discussed before for the protocol BP.

D. Efficiency

To the best of our knowledge, the protocol of Burmester and
Desmedt [46] (often called the BD protocol) is the most effi-
cient one among forward-secure group key exchange protocols
that possess a rigorous proof of security in the standard model,
i.e., without the random oracle assumption [54]. (The security
of the BD protocol was proved under the DDH assumption in
the relatively recent work of Katz and Yung [20].) In Table 1,
we compare the efficiency between our protocols and the BD

protocol, assuming use of the one-round compiler of Katz and
Yung [20] that transforms unauthenticated group key exchange
protocols into authenticated ones. As for computational costs,
the table lists the amount of computation per user.

Our group key exchange protocols are very efficient in terms
of the computational load on mobile devices. Each mobile de-
vice in protocol GP performs only 3 modular exponentiations, 1
signature generation, and 2 signature verifications. As shown in
Table 1, the protocol BP imposes even less computational bur-
den on mobile devices. If precomputations are possible, all the
exponentiations in the first round of the protocols (i.e., the com-
putations of z;’s in BP and Z;’s in GP) can be performed off-line
and thus, the number of exponentiations to be done on-line by
a mobile device can be reduced to one or two. Furthermore,
the protocol GP avoids any potential performance bottleneck by
distributing the computational load equally amongst high power
users. If the number of high power users is at least /n,., the
maximum computation rate per user in protocol GP is bounded
by O(y/n). This distinguishes the protocol GP from the pro-
tocol BP and other extremely asymmetric protocols [34], [39],
[47] where one or two special users must perform O(n) public-
key cryptographic operations.

In the BD protocol, all users behave in a completely sym-
metric manner, sending one message per round and performing
the same amount of computation. While this protocol is very
efficient in general, the full symmetry negatively impacts on
the overall performance of the protocol involving mobile de-
vices. The number of messages received by each mobile device

466 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006

Table 1. Complexity comparison.

Communication Computation

Rounds Messages Low power users High power users
BD* 3 3n BE+28+0(n)V. 3E+2S+O0(n)V
BPt 3 2n 2E + 1S+ 1V O(n)E + 1S + O(n)V
GPt 4 2n 3E + 1S + 2V O(y/n)E + 1S + O(\/n)V

E: Exponentiations, S: Signatures, V: Verifications

BD™, BP", GP*: The authenticated protocols obtained by applying the compiler of Katz and
Yung [20] to the unauthenticated protocols BD, BP, and GP, respectively.

is O(n) compared to O(1) in our protocols. This implies that
in the BD protocol, all users including mobile users have to per-
form O(n) signature verifications. Indeed, O(n) signature veri-
fications per user are commonly required in all other symmetric
protocols [36], [40], [41].2

The discussion above can be summarized as follows. In situa-
tions where users with equal computational capabilities commu-
nicate over a broadcast network, the fully-symmetric protocol of
Burmester and Desmedt might be more favorable than our con-
struction which, in contrast, is well suited for combined wired
and wireless networks which consist of both stationary comput-
ers with sufficient computational capabilities and mobile devices
with relatively restricted computing resources.

o

HI. SECURITY PRELIMINARIES

Any form of security analysis of a cryptographic construction
should be preceded by clear definitions of adversary capabilities
and security goals. In this section we provide such a preliminary
formulation for a concrete security analysis of our group key
exchange protocols. ;

A. Communication and Adversary Model

A recent paradigm for security analysis of group key ex-
change protocols is the use of a concrete and realistic model
which formalizes protocol executions in the presence of an ad-
versary who has various attacking capabilities (e.g., [12], [19],
[20], [32]-[34], [40]-[42]). In general, each capability of the
adversary is modeled via an oracle to which the adversary is al-
lowed to make queries. Since we focus on security against a pas-
sive adversary, there is no Send oracle in our adversary model.
In particular, our model follows the so-called ROR model of
[14] in that the adversary is allowed to query the Test oracle as
many times as it wants. A detailed discussion on this is deferred
to later in this section.

A.1 Participants

Let U be a set of all users who are potentially interested in
participating in a group key exchange protocol. The users in
any subset of I/ may run the group key exchange protocol at any
point in time to establish a session key. Each user may run the

3 Although there are some other symmetric protocols proposed [43], [44],
we exclude these protocols from consideration simply because it is unfair to
compare the efficiency between signature-based authenticated protocols and
password-based authenticated protocols. '

protocol multiple times either serially or concurrently, with pos-
sibly different groups of participants. Thus each user can have
many instances at a given time. We use H{'] to denote instance ¢
of user U.

A.2 Partners

Intuitively, the partners of an instance is the set of all in-
stances that should compute the same session key as the instance
in an execution of the protocol. Like most of previous work, we
use the notion of session 1Ds to define partnership between in-
stances. Literally, a session ID (denoted as sid) is a unique iden-
tifier of a communication session. Following [11], [13], [15],
[55], we assume that session IDs are assigned and provided by
some higher-level protocol. While this assumption is unneces-
sary in some protocols [20], [34] which use only broadcast mes-
sages (in these protocols, a session ID can readily be defined as
the concatenation of all message flows), it seems very useful in
other cases where messages sent and received in an execution of
the protocol may be different among protocol participants. In-
deed, as pointed out in [11], the use of session IDs is typical
in common security protocols‘ such as SSL [56] and IPSec [57].
We let STD be the algorithm used by the higher-level protocol
to generate session IDs, and assume that SZD is publicly avail-
able.

We also need the notion of group IDs to define partnership
properly. A group ID (denoted as gid) is a set consisting of
the identities of the users who intend to establish a session key
among themselves. This notion is clearly natural because it is
impossible (not even defined) to ever execute a group key ex-
change protocol without participants. Indeed, a group ID is a
both necessary and important input to any protocol execution.

In order for an instance to start to run the protocol, we re-
quire that a pair of sid and gid should be given as input to the
instance. We use sid?; and gid?, to denote respectively sid and
gid provided to instance IT},. Note that gid?, should always in-
clude U itself. Session IDs and group IDs are public and hence
available to the adversary. Indeed, the adversary in our model
generates these IDs on its own; it generates a session ID by run-
ning SZD and a group ID by choosing a subset of /.

An instance is said to accept when it successfully computes
a session key in a protocol execution. Let acc}; be a boolean
variable that evaluates to TRUE if I}, has accepted, and FALSE
otherwise. We say that any two instances IT¢, and H@,, where
U # U’, are partners of each other, or equivalently, partered
iff the following conditions are met: (1) sid;, = sid{,,;)

NAM AND WON: GROUP KEY EXCHANGE OVER COMBINED WIRED AND WIRELESS NETWORKS : 467

gidy, = gid!,; and (3) accy; = accl,, = TRUE. We also say
that two instances IT¢; and H{'J, (U # U’) are potential partners
of each other, or equivalently, potentially partnered iff the first
two conditions above hold. We use pidb and ppid@ to denote re-
spectively the partners and the potential partners of the instance
IT;;. Then it follows by the definitions that pid}; C ppid?,.

A.3 Adversary

It is not very persuasive to claim the protocol’s security with-
out clarifying what kind of adversary we are dealing with. In a
formal model for key exchange, the attacking ability of an ad-
versary is modeled via various oracles to which the adversary is
allowed to make queries. But unlike previous models for group
key exchange, we allow the adversary to query the Test oracle
as many times as it wants.* This approach was recently sug-
gested by Abdalla et al. [14] for password authenticated key ex-
change in the three-party setting and was also proved there to
lead to a stronger model (for more details, see Lemmas 1 and
2 in Appendix B of [14]). What we found interesting is that
allowing multiple Test queries is very useful in proving Theo-
rem 2 which asserts the security of our main protocol GP. Other
oracles (Execute, Reveal, and Corrupt) are as usual. A more
detailed description of each of these oracles follows:

« Execute(sid, gid): This query prompts an honest execu-
tion of the protocol between a set of instances consisting of
one instance for each user in gid, where the instances are
all given the session ID sid and the group ID gid as their
input. The transcript of the honest execution is returned
to the adversary as the output of the query. This models
passive attacks on the protocol.

« Reveal(II},)’: This query returns the session key held by
instance II}; to the adversary. This captures the idea that
loss of some session keys should not lead to the compro-
mise of other session keys [53]. This query can be asked
only if accl, = TRUE and the adversary has not queried
Test(Il,,) for some H{;, in pidzi] (see below for the de-
scription of the Test oracle and see Section III-B for more
details on this matter).

o Corrupt(L): This query returns to the adversary all of U’s
long-term secrets. This models the adversary’s capability
of breaking into a user’s machine and gaining access to the
long-term data set stored there. The adversary can issue this
query at any time regardless of whether U is currently exe-
cuting the protocol or not. This oracle call captures the idea
that damage due to loss of U’s long-term secrets should be
restricted to those sessions where U will participate in the
future.

o Test(IT};): This query provides a means of defining secu-
rity (see Section I1I-B). The output of this query depends
on the hidden bit that the Test oracle chooses uniformly
at random from {0, 1} during its initialization phase. The
Test oracle returns the real session key held by H}'J ifb=1,
or returns a random session key drawn from the key space if

4In all of previous models for group key exchange (except the very recent one
in [43]), the adversary is restricted to ask only a single query to the Test oracle.

5While the Reveal oracle does not exist in the ROR model of Abdalla ef al.
[14], it is still available to the adversary in our model and is used in proving
Lemma 1, enabling a modular approach in complicated security proofs for our
protocols.

b = 0. The adversary is allowed to query the Test oracle as
many times as necessary. But, the query can be asked only
for fresh (see Definition 2 given below) instances. All the
queries to the oracle are answered using the same value of
the hidden bit b that was chosen at the beginning. Namely,
the keys returned by the Test oracle are either all real or all
random.

Definition 2: The instance IT};
of the following conditions hold:
1. accy; = FALSE.

2. The adversary queried Corrupt(U’) for some U’ in gid};
before some IT}, in ppidy; accepts.
3. The adversary queried ReveaI(HJ ,) for some HU, in pidy;.

4. The adversary queried Test(II7,,) for some IT},, in pldl
All other instances are considered fresh

is considered unfresh iff any

Remark 1: By the fourth condition of Definition 2, we re-
quire that for each different set of partners, the adversary should
access the Test oracle only once. One may think that this re-
striction weakens the ability of the adversary. However, this is
not the case because when all information on partnering is pub-
lic, obtaining the same data multiple times (from the instances
partnered together) is no different than obtaining it once.

We represent the amount of queries used by an adversary as
an ordered sequence of four non-negative integers, Q = (Gexec,
reves Jeorrs Qrest), Where the four elements refer to the num-
bers of queries that the adversary made, respectively, to its Exe-
cute, Reveal, Corrupt, and Test oracles. We call this usage of
queries by an adversary the query complexity of the adversary.

B. Security Definition

We now proceed to define what is meant for a group key ex-
change protocol to be secure. The security of a group key ex-
change protocol P against an adversary A is defined in terms
of A’s probability of succeeding in distinguishing real session
keys from random session keys. That is, the adversary A is con-
sidered successful in attacking the protocol P if it breaks the
semantic security of session keys generated by P. This notion
of security is defined in the context of the following two-stage
game, where the goal of adversary A is to correctly guess the
value of the hidden bit b used by the Test oracle.

« Stage 1: A makes the oracle queries at will as many times
as it wants.

« Stage 2: Once A decides that Stage 1 is over, it outputs a
bit &’ as a guess for the value of the hidden bit b used by the
Test oracle. .A wins the game if b = b'.

In the game above, the adversary can keep querying the ora-
cles even after it asked some Test queries. However, when there
was the query TeSt(II) asked, the adversary is prohibited from
querying Reveal(Il7;,) for some II7,, € pid’;. This restriction
reflects the fact that the adversary can win the game unfairly by
using the session key obtained via the query Reveal(IT?,,).

Given the game above, the advantage of A in attacking proto-

col P is defined as
Advp(A) = |2-Prlb = b} - 1].

Note that this definition is equivalent to say that the advantage of
Ais the difference between the probabilities that .4 outputs 1 in

468 : JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2005

the following two experiments constituting the game: The real
experiment where all queries to the Test oracle are answered
with the real session key, and the random experiment where all
Test queries are answered with a random session key. Thus, if
we denote the real and the random experiments respectively as
Exps?'(A) and Expa™(A), the advantage of .A can be equiva-
lently defined as

Advp(A) = |Pr[Exp5§a'(A) = 1] — Pr[Expa"i(A) = 1]

where the outcomes of the experiments is the bit output by 4.

We say that the group key exchange protocol P is secure if
Advp(.A) is negligible for all probabilistic polynomial time ad-
versaries A. To quantify the security of protocol P in terms of
the amount of resources expended by adversaries, we use the
notation Adv p(t, Q) which is defined as

Advp(t,Q) = mj‘mx{Ava(A)}

where the maximum is over all adversaries A with time com-
plexity at most ¢ and query complexity at most ().

C. Decisional Diffie-Hellman (DDH) Assumption

Let G be a cyclic (multiplicative) group of prime order q.
Since the order of G is prime, all the elements of G, except 1, are
generators of G. Let g be a random fixed generator of G and let
z,y, and z be randomly chosen elements in Z; where 2z # zy.
Informally stated, the DDH problem for G is to distinguish be-
tween the distributions of (g%, g%, g®¥) and (¢%, g, ¢*), and the
DDH assumption is said to hold in G if it is computationally in-
feasible to solve the DDH problem for G. To be more forral,
we define the advantage of D in solving the DDH problem for

G as

AdvE" (D) =
IPr[D(G, 9,6, g%,) = 1] — PIID(G, 9,4", g%, ¢°) = 1]|.

We say that the DDH assumption holds in G (or equivalently,
the DDH problem is hard in G) if Advi®"(D) is negligible for
all probabilistic polynomial time algorithms D. We denote by
Adv3™ (t) the maximum value of Adv3® (D) over all D running

in time at most .

IV. SECURITY PROOFS

In this section, we prove that the group key exchange proto-
col P-CWWN is secure against a passive adversary in the for-
mal model given in the preceding section. As we have seen, the
protocol P-CWWN consists of two subprotocols: The basic pro-
tocol BP for the case 0 < ns; < 2 and the generalized protocol
GP for the case n; > 2, where n; is the number of high power
users. We first provide the proof of security for the basic proto-
col BP under the DDH assumption and then reduce the security
of the generalized protocol GP to the security of protocol BP.
Corollaries 1 and 2 together constitute our main security result,
giving concrete security bounds for the protocols BP and GP,
respectively.

Due to the length and complexity of our proof, we first de-
scribe the top level structure of the proof procedure. Towards

the goal of proving the corollaries, we start with Lemma 1 which
states that any group key exchange protocol secure against a pas-
sive adversary who makes only a single query to the Test oracle
is also secure against a passive adversary who makes multiple
Test queries. Proving this lemma allows us to limit our security
concern only to those cases where adversaries access their Test
oracle only once. In Section IV-A, we continue by proving The-
orem 1 which plays a key role in deriving Corollary 1. The theo-
rem says that under the DDH assumption, the basic protocol BP
is secure against a passive adversary who asks only one query to
its Test oracle. Combining Theorem 1 with Lemma 1, we imme-
diately obtain Corollary 1. In Section IV-B, we turn to proving
Corollary 2 which, as mentioned above, states the security result
for our main protocol GP. Corollary 2 is proved analogously to
Corollary 1. Given Lemma 1, Corollary 2 directly follows from
Theorem 2, the equivalent of Theorem 1 for the protocol GP.
Thus, our final task is to prove Theorem 2, in which we assert
that as long as the basic protocol BP is secure against a passive
adversary asking multiple Test queries, the generalized protocol
GP is secure against a passive adversary who asks only one Test
query.

Reminding that Advp(t, Q) denotes the maximum value of
Advp(A) over all A with time complexity at most ¢ and query
complexity at most (, we now proceed to prove the security of
the protocols. We begin by proving the following lemma, which
states that in attacking any group key exchange protocol, the
maximum advantage obtainable by a passive adversary asking
Grest, 1€5t queries is at most gieqt, times the maximum advantage
that a passive adversary can obtain when it is restricted to access
the Test oracle only once.

Lemma 1: For any group key exchange protocol P,

AdVP(t: Q) < Gtest - AdVP (ta QI)

where Q = (Qexec: Greves Qeorrs Qtest) and Q/ = (Qexec, Qreve T
qtest - 1, qCOI‘I” 1)

Proof: The idea of the proof is essentially the same as
in the proof of Lemma 2 in Appendix B of [14], where they
dealt with the case of Q@ = (gexec» 0, 0, Gtest) and Q' = (Qexecs
GQtest — 1; 0’]-)

Let A be an adversary against the security of a group key
exchange protocol P, with time complexity ¢ and query com-
plexity @ = (Gexec> Grever Jeorrs Grest). Recall that the ad-
vantage of A in attacking P is the probability that A outputs
1 in the real experiment Exp's (A) minus the probability that
A outputs 1 in the random experiment Expa"!(.A), namely,
Advp(A) = |Pr[ExpE" (A) = 1] — Pr[ExpB™(A) = 1]].

The proof proceeds by a standard hybrid argument [58]. Con-
sider a sequence of giesy + 1 hybrid experiments Exp’h(A),
0 < i < gyest, Where each Expp(A) is defined as follows.

Experiment Exp(A):

1. The adversary A interacts with the oracles, asking queries
at will as many times as it wants. The interaction proceeds
as specified in the model except that A’s queries to the Test
oracle are handled differently, as follows:

o The first i queries to the Test oracle are answered with

NAM AND WON: GROUP KEY EXCHANGE OVER COMBINED WIRED AND WIRELESS NETWORKS 469

a random session key and all remaining Test queries are
answered with the real session key.

2. Some time after A asked all its queries, it outputs 0 or 1 as
the outcome of the experiment.

Clearly, the experiments Exph(A) and Exp%=t(A) at
the extremes of the sequence are identical to Exp’s(A)
and ExpB"¥(.A), respectively. Notice that as we move from
Exp% '(A) to Expi(A) in the sequence, we change the re-
sponse of i-th Test query from the real session key to a random
session key. Since there are gies; Such moves from Expﬁa'(A)
to ExpE"(.A), the inequality of the lemma follows immediately
if we prove that the difference between the probabilities that
A outputs 1 in any two neighboring experiments Exp% ' (A)
and Exph(A) is at most Advp(t, Q') where Q' = (gexecs
Greve + Qtest — 1, Georr» 1). That is, to complete the proof, it
remains to show that for every 1 < i < gyest,

|Pr[Exp1;1(.A) = 1] — Pr[Exp5(A) = 1]| < Advp(t,Q").
ey

Let ¢ = [Pr[Exp5 '(A) = 1] — Pr[Exps(A) = 1]|. Then,
using the adversary .4, we construct an adversary .A; attacking
the protocol P, with advantage e, time complexity ¢, and query
complexity @' = (qexecs Qreve + GQtest — 1» Georr> 1). A; beging
by invoking the adversary .4, then proceeds to answer the oracle
queries of A using its own oracle queries, and finally ends by
outputting whatever bit A eventually outputs. 4; answers the
queries of A as follows:

» When A asks a query to the Execute, Reveal, or Corrupt
oracle, A; answers it in a straightforward way by sending
the same query to its own corresponding oracle and then
simply forwarding to 4 the outcome of its oracle query.

o If A queries the Test oracle, then there are three cases to
handle:

- For the first ¢ — 1 Test queries, .A; answers them with a
random session key.

- On the i-th Test query, 4; queries its own Test oracle
and returns the result of its Test query.

- For all the remaining Test queries, .A; answers them
with the real session key by accessing its own Reveal
oracle.

It is easy to see that .A; has time complexity ¢ and query com-
plexity at most @' = (gexecs Greve + Gtest — 1, doorrs 1)

To quantify the advantage of A;, it now suffices to notice the
following two facts:

« The probability that .A; outputs 1 when its Test oracle has
returned the real session key is exactly PriExp’s ' (A) = 1].

o The probability that .A; outputs 1 when its Test ora-
cle has returned a random session key is identical to
Pr[Expp(A) = 1].

The advantage of A; in attacking protocol P, Advp(A;), is
therefore exactly € = |Pr[Exp% ' (A) = 1] — Pr[Exp%(A) = 1]|.
Since Advp(A;) < Advp(t,Q’) by definition, we obtain (1)
above. This gives the desired result of the lemma.]

A. Proof of Security for the Basic Protocol BP

As the following theorem states, the basic protocol BP is a
group key exchange protocol secure against a passive adversary
who calls the Test oracle only once, as long as the DDH as-
sumption holds in G.

Theorem 1: Let Q = (Qexec, Greves Gcorrs 1) Then, we have
Advgp (t7 Q) < 2¢exec AdVg}dh (t/)

where t' = t + O(|U|gexectsp) and tpp is the time needed for
execution of protocol BP by any party.

Combining this theorem with Lemma 1 immediately yields
the following corollary which states that the group key exchange
protocol BP is secure against a passive adversary under the DDH
assumption for G.

Corollary 1: Let Q) = (qexec, Greves Gcorrs qtest)- Then, we
have

AdVBP (t7 Q) S 2qtestqexec : AdVg;,dh (tl)
where ¢’ is as in Theorem 1.
‘We now proceed to prove Theorem 1.

Proof- Let A, be a passive adversary attacking the ba-
sic protocol BP, with time complexity ¢ and query complexity
@ = (Qexecs Greves Georr> 1). Assume that the probability that A,
correctly guesses the value of the hidden bit b used by the Test
oracle is 1/2 + e. Then, we construct from 4, a distinguisher D
that solves the DDH problem for G with probability e / Qexec-

To construct the distinguisher D, we first need to consider the
following two distributions:

def
ReaIBp =
\
8,71, Tn €R Lg;
w:gsazlzgrl"“>zn:grn;
:L.l:gSTl,,,,,xn.___gSTn;
(T K)| X =1 2n;

-1 —1.
y2:X.$2 ,...’yn:X.wn ;
T=(w7227"'7zn»y2)”'3y‘n);
K=X ysun

and
def
FakeBp =

¢ 3\
8,71, Tn,Q1," ", Qn eRZq;
w!:vgs,zl:g’l'17.__’zn=g’r‘n;
xlzgal’...’mn:gan;

(TK)| X =1 Tn;

1 _
y2=X'w2 a"'7yn:X'mn1;
T= (w7227 T Zn, Y2, '7yn);

{ K=X "y yn

The distribution Realgp matches exactly the real execution of
BP among n users Uy, - - -, Uy,. The distribution Fakegp is ob-
tained from Realgp by changing the way of computing z; for
i € [1,n]; in Fakepp, each z; is computed as g% where a; is
drawn at random from Z, instead of being equal to sr;.

470 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006

We now claim that distinguishing between two distributicns
Realgp and Fakepp is at least as difficult as solving the DDH
problem for G.

Lemma 2: Let D’ be a distinguisher that given as input
(T, K) coming from one of the two distributions Realgp and
Fakepp, runs in time ¢ and outputs 0 or 1. Then, we have

T K) =1 | (T K) — ReaIBp]
~PrD'(T,K)=1|(T,K) « FakeBP”
< Advih (it

|Pr

where t' = t+O(ntexp) and texp is the time required to perform
an exponentiation in G.

Proof: In order to prove the lemma, we show how to build
from D’ a d1st1ngu1sher D" that solves the DDH problem in G.
Let (¢°,9™,¢° T2) € G* be an instance of the DDH problem
given as input to D”. Using the triple (g%, g"2, g*"2), D" first
generates (T, K') according to the following distribution Distgp:

DISth d_ef

T1, 03,03, s Qn, Bn €R Zg;)

w=g%2=9"2=g"

23 = gr1a3+r2ﬁ3, e 2y = gnan+rzﬂn;

T1=g"", ;= g2,

(T K| z = goniots'm2bi for i ¢ [3,n];

X =1 zp;
=X-:62_1,-~-,yn=X-$;1;
= (w, 29, Zn, Y2, - - S Yn);

K =Xy

\

Then, D" runs D’(T, K') and outputs whatever bit D’ eventually
outputs.

If (¢°, g™, gsl”) is a true Diffie-Hellman triple (i.e., s = &),
then we have Distgp = Realpp since z; = 2§ forall : € [1,n].
If instead (g°, g™, ¢° "2) is a random triple, then it is clear that
Distgp = Fakegp. This means that;

1. The probability that D" outputs 1 on a true Diffie-Hellman
triple is exactly the probability that D’ outputs 1 on (T, K)
generated according to the distribution Realgp.

2. The probability that D" outputs 1 on a random triple is
identical to the probability that D’ outputs 1 on (T, K)
generated according to the distribution Fakegp.

The claim of the lemma immediately follows because the run-
ning time of D" is the running time of D’ added to the time to
generate (T, K) according to Distgp. |

We now make the following claim about the Fakegp distri-
bution.

Lemma 3: For any computationally unbounded adversary
A, we have

PI‘[A(T, K(b)) =} ‘
(T, K (1)) + Fakepp; K(0y < G; b «— {0,1}] = 1/2.

Proof: Let us write log, 1 to denote the exponent v such
that ¢ = ¢g*. Then, in distribution Fakegp, the transcript T con-
strains the exponents a; only by the following n — 1 equations:

log,yo = —az + Zai

log, ys = —as + Z a;

n
—Qn + E a;.
i=1

Since the equation log, X = > 1 a; is linearly independent
from the set of n — 1 equations above, the group secret X is
independent of the transcript T. This implies that for any com-
putationally unbounded adversary A:

log, yn =

Pr[.A(T,X(b)) =b I
(T,X(l)) — FakeBp;X(g) A G; b« {0, 1}] = 1/2.

Since K = X - ya- - -y, and y;’s are all public, the statement of
the lemma immediately follows by a simple standard argument.
O

We are now ready to describe the construction of the distin-
guisher D. Assume without loss of generality that A, makes
its Test query to an instance activated by the ~y-th Execute
query. The distinguisher D begins by choosing a random § €
{1,-- -, gexec} as a guess for the value of vy and by choosing a bit
b uniformly at random from {0, 1}. D then simply runs Ay as
a subroutine and answers the oracle queries of .4;. Since there
is no long-term secret information used in the protocol BP, D
may ignore all queries of 4, to the Corrupt oracle. For all other
queries, except the é-th Execute query, D answers them in the
natural way by executing the protocol BP on its own. But when
Ay asks the §-th Execute query, D slightly deviates from the
protocol, embedding an instance of the DDH problem given as
input into the transcript as follows: Using its problem instance
(9°,972,9°") € G3, D generates (T, K) according to the dis-
tribution Distgp and answers the §-th Execute query of A, with
T. The distinguisher D aborts and outputs a random bit if § # ~.
Otherwise, D answers the Test query of 4, with K if b = 1, and
with a random key otherwise. Now at some point in time, when
Ap terminates and outputs its guess &', D outputs 1 if b = ¥/,
and 0 otherwise.

We now analyze the advantage of D in solving the DDH prob-
lem for G. Suppose that 4, asked its Test query to an instance -
activated by the -th Execute query; this happens with proba-
bility 1/gexec. If (g%, g™, %) is a true Diffie-Hellman triple,
then, by Lemma 2, Distgp = Realgp and thus, by assump-
tion, Pr[b = '] = 1/2 4+ €. So, the probability that D out-
puts 1 on a true Diffie-Hellman triple is also 1/2 + ¢. If instead
(g%,9™, gS'Tz) is a random triple, then Distgp = Fakegp and
hence, Pr[b = ¥'] = 1/2 by Lemma 3. Thus, the probability
that D outputs 1 on a random triple is exactly 1/2. Now since
Pr[d = 7] = 1/gexec, We obtain

dv(d;dh (D) = 6/qe)((i‘C'

NAM AND WON: GROUP KEY EXCHANGE OVER COMBINED WIRED AND WIRELESS NETWORKS 471

Finally, since Advgp(A) = 2¢ by definition, Theorem 1 fol-
lows immediately if we notice that D takes at most time ¢’ =
t+ O(|U|QexectBP)- O

B. Proof of Security for the Generalized Protocol GP

We now turn to proving the security of our main protocol GP
against a passive adversary. Corollary 2 below presents the con-
crete result of security for protocol GP. The first step towards
proving the corollary has already been taken with the proof of
Lemma 1 given earlier in this section. Recall that by Lemma 1,
we showed that the security of a protocol against a passive ad-
versary asking multiple Test queries can be reduced to the se-
curity of the same protocol against a passive adversary asking
only a single Test query. So we are left with proving the fol-
lowing Theorem 2 which claims the security of the protocol GP
against a passive adversary who queries the Test oracle only
once. We prove this claim by finding a reduction from the prob-
lem of breaking protocol GP to the problem of breaking the un-
derlying protocol BP. The proof proceeds very much along the
lines of that of Theorem 1, extending the techniques used there
to this more general case.

Theorem 2: Let Qg = (gexecs Greves Georr, 1) and @y = (m,
0, 0, m), where m is the number of users at level 1 of the tree
used in protocol GP (see the description of protocol GP). Then,
we have

Advgp (t7 Qg) < (QQexec + 1) - Advpp (tlv Qb)

where t' = t + O(|U|gexectap) and tgp is the time required for
execution of protocol GP by any party.

As mentioned above, this theorem together with Lemma 1 im-
mediately yields the following corollary which gives one of our
main results of this section: The group key exchange protocol
GP is secure against a passive adversary under the security of
the protocol BP, which in turn has been proven under the DDH
assumption for G.

Corollary 2: Let Qg = (execs Greves Georrs Grest) and Qp =
(m, 0, 0, m), where m is as in Theorem 2. Then, we have

AdVGP (t) Qg) S Qtest(Qqexec + 1) : AdVBP (tlv Qb)

where t’ is as in Theorem 2.
We proceed with the proof of Theorem 2.

Proof: As usual, the proof of the theorem proceeds by a
standard reduction argument. Let A, be a passive adversary at-
tacking the generalized protocol GP, with time complexity ¢ and
query complexity Qg = (gexec> Greves georr> 1). Given the ad-
versary Agy, we construct a passive adversary A attacking the
basic protocol BP, with time complexity ¢ and query complex-
ity @p = (m, 0,0, m).

For ease of exposition, we first introduce some additional no-
tations. Consider the tree structure of n users given in Fig. 1(a)
of Section II and recall that G; denotes the subgroup consist-
ing of the users in the subtree rooted at the node hosting U;.
For i € [2,m + 1], let T; denote the transcript of the basic
protocol BP executed by the subgroup G, to generate the sub-
group key k;. Then, using the distribution Realgp defined in
the proof of Theorem 1, we can write the honest generation of

(Ti, ki) by subgroup G, as (T;,k;) «— Realgp. We also write
(T;,a;) «+ Randpp to denote the generation of (T;, a;), where
T, is generated according to distribution Realgp and a; is a ran-
dom key chosen independently of T; but chosen uniformly from
G.

With these notations, we now introduce the following two dis-
tributions:

def
Realgp =
(T2, k2), s (Tm+1, kmy1) — Realgp;)
8,71 €R Zg;
o = I(kg), oy Tm41 = I(km+1);
w= gs’ 21 = ng’ i Aml T ng+1;
T = 8T e 1= STm+41 .
(T, K) 1 g y Im+ g)
X = .wm_"_l;
-1 -1
y2=X'fE2 3 Ymtl :X'$m+1,
T = (T21 v '7Tm+17
W,y 22y "y Zm+1,Y2, " 'aym—}—l);
K:X.yz...ym+1)
and
def
Randgp =
(T2ya2), -+, (Tm+1,am+1) < Randpp;
8,71 €R an
ro =1I(a2), Tm+1 = I(@Gm+1);
w = gsrzl = ng’ Ty Rm4l = g'f‘m+1;
1 =9t - 1 = g%Tm+1.
(T, K) 1 g ’ s m+41 g)

X = a}l...xm+1;

-1 -1
y2=X'ZL'2 y Ty Ymtl :X"’Em-}.l,
T= (T2a oo 'aT‘m+1a

W, 22, "y Zm+1,Y2, 'aym+1);

K=X- -y yms1

Realgp corresponds to the distribution of the transcript T and
the session key K generated in the real execution of protocol
GP. The distribution Randgp is obtained from Realgp by re-
placing each subgroup key k; with a random key a;.

We now claim that distinguishing between the two distribu-
tions Realgp and Randgp is no easier than breaking the secu-
rity of the basic protocol BP.

Lemma 4: Let D be a distinguisher that given as input
(T, K) coming from one of the two distributions Realgp and
Randgp, runs in time ¢ and outputs 0 or 1. Let @, = (m, 0, 0,
m) where m is as in Theorem 2. Then, we have

|Pr[D(T,K) =1 (T,K) « Realgp]
—Pr[D(T,K) = 1| (T,K) < Randgp||
< Advep(t, Q)
where t' = t+O(mtexp) and teyp is the time required to perform
an exponentiation in G.

Proof: Suppose that y and v are the probabilities that
D outputs 1 on (T, K) generated according to Realgp and

472 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006

Randgp, respectively. Using the distinguisher D, we construct
an adversary .4; whose advantage in attacking the basic protocol
BPis |p — v|.

Recall first that the tree structure used in the generalized pro-
tocol GP is public and so the value of m and the users of each
subgroup G; are known to the adversary A;. Using these in-
formation, A} makes m queries to its Execute oracle, one for
each subgroup G;, and receives in return m transcripts Tz, Ts,

-+, Tma1. Let Ilyeg, denote any instance activated by the
Execute query directed to G;. Now A asks m Test queries
Test(flyeg,), Testyeg,), - - -, Test(lyeg,, .,); recall that in
our model, the adversary is allowed to ask multiple queries to its
Test oracle ds long as the tested instances are fresh and no two
of them are partnered together. Let k; be either the real session
key or a random session key returned in response to the query
Test(Ilyeg,). We write (T, k}) < Testgp to denote this way
of generating a transcript-key pair (T, k).

Having made the queries and received the results as above,

! generates (T, K) according to the distribution Distgp (de-
fined below), runs D(T, K), and outputs whatever bit D outputs.
Distribution Distgp is defined as follows:

Distgp
(TQ) kJQ)7) (Tm—{—l, k;n+1) «— Testgp; A
5,71 €R Lg;
ro = I(k3), - rmi1 = Ik)
w=g%z1=6" " Zmy1 = 9 ™
T Ry| B9 T =T

X =21 Tmy1;
yr =X 23", Ymr1 = X s
T=(Ta, - Tt

W, 22, Zmt1, Y2, s Yme1);
K=X 9o Ymi1

Notice that to generate (T,K) according to Distgp, Aj
performs O(m) exponentiations in G and makes m Execute
queries and m Test queries. Therefore, if we let ¢ be the time
complexity of D, A, has time complexity ¢’ = t + O(mtexp)
and query complexity @, = (mn, 0, 0, m).

The only possible difference between the distribution Distcp
and the other two distributions Realgp and Randgp is in the
way of generating the subgroup keys. If each k; is the real ses-
sion key, clearly we have Distgp = Realgp. On the other hand,
if each k! is a random session key chosen independently of the
transcript T;, then Distgp = Randgp. This means that:

1. The probability that A} outputs 1 when kg, - - -, k;, ., are
real session keys is exactly p, the probability that D out-
puts 1 on (T, K) generated according to the distribution
Realgp.

2. The probability that A, outputs 1 when ks, ---, k., are
random session keys is exactly v, the probability that D
outputs 1 on (T, K) generated according to the distribution
Randc,p.

Thus Advgp(A,) = |t — v/|. Combining this and Advpp (Aj})
b b

<
Advgp (t', Q) yields the statement of Lemma 4. O

We continue with the following lemma.

Lemma 5: For any computationally unbounded adversary
A, we have

PrA(T, K@) =b |
(T, K(l)) — Randgp; K—(o) — G; b« {0, 1}] =
PI‘[A(T,K(I,)) =b I
(T,K(l)) — ReaIBp;K(O) — G; b+ {0, 1}]
Proof: In distribution Randgp, the session key K is com-
pletely independent from the set of m transcripts {T; | i €
[2,m + 1]} since each a; € G is chosen at random indepen-
dently of the transcript T;. Therefore, if we define Rand’GP as

the distribution derived from Randgp by eliminating the tran-
scripts {T; | 7 € [2, m + 1]}, it is clear that:

PrlA(T, K@) =b|

(T, K(1)) « Randgp; K(g) «— G;b— {0,1}] =
PrlA(T, K@) = b |

(T, K@y) «— Randgp; K(g) < G; b — {0,1}]. @

Since Rand'GP is identical to Realgp (not to be confused with
Realgp), it is also immediate that:

PrlA(T,Ky) =b |

(T,K(1)) < Randgp; Koy < G;b — {0,1}] =
PrlA(T, K@) = b |

(T, K(1)) < Realgp; K(0) — G;b+—{0,1}]. (3

By combining (2) and (3), we obtain the statement of Lemma 5.
O

Before continuing further, let us define

SuccPrpp(Ag) 4

Pr[Ay(T,Kw)) = b | (T, K@) < Realgp;
K «— G;b« {0,1}]

and

SuccPrgp(Ay) o

Pr[Ay(T,K)) = b| (T, K(1)) < Realgp;
K(O) = G', b — {0, 1}]

Armed with the two lemmas above, we now give the details
of the construction of the adversary A;. Assume without loss
of generality that .4, makes its Test query to an instance acti-
vated by the y-th Execute query. The adversary .4, begins by
choosing a random § € {1,---, Jexect @s a guess for the value
of v and by choosing a bit b uniformly at random from {0, 1}.
It then runs .4, as a subroutine, simulating the oracles. .A, may
ignore all Corrupt queries of A, because there is no long-term
secret information used in the protocol GP. For all other queries,
except the §-th Execute query, A, answers them in the natural
way by executing the protocol GP on its own. But when .4 asks
the §-th Execute query, A, responds to the query by calling its
own Execute and Test oracles; namely, .4, generates (T, K)

NAM AND WON: GROUP KEY EXCHANGE OVER COMBINED WIRED AND WIRELESS NETWORKS 473

according to the distribution Distgp and returns the transcript T
in response to the query. The adversary .4, aborts and outputs
a random bit if § # ~y. Otherwise, A; answers the Test query
of Ay with K if b = 1, and with a random key otherwise. Now
when A, terminates and outputs its guess o', 4, outputs 1 if
b =¥, and 0 otherwise.

From the above simulation of oracles, we can see that A
has query complexity Q, = (m, 0, 0, m) and time complexity
t' =t + O(JU|gexectcp) Where t is the time complexity of A,.

We now analyze the advantage of A, in attacking the pro-
tocol BP. Assume that A, asked its Test query to an instance
activated by the -th Execute query; this is the case with prob-
ability 1/gexec. If k5, k5, - -+, Ky, 1 in Distgp are real session
keys, then Distgp = Realgp and thus, the probability that A,
correctly guesses the hidden bit b is SuccPrgp(Ay). This means
that the probability that .4, outputs 1 when its Test oracle re-
turns actual session keys is also SuccPrgp(.Ag). On the other
hand, if k5, k5, - - -, kJ,, , , in Distgp are all random session keys,
then Distgp = Randgp and thus, by Lemma 5, the probabil-
ity that A, correctly guesses the hidden bit b is SuccPrgp(Ay).
Thus, the probability that A, outputs 1 when its Test oracle re-
turns random session keys is also SuccPrpp(Ag). Therefore
since Pr[d = v] = 1/¢exec, We obtain:

Advpp(Ap) = [SuccPrgp(.Ag) — SuccPer(Ag)|. 4)

Gexec
Notice that this equation already implies that [SuccPrgp(Ay) —
SuccPrgp(A,)] is negligible and so SuccPrgp (A,) is not much
greater than 1/2.
With (4), it is easy to bound the advantage of A, in attacking
the protocol GP. A straightforward calculation shows:

Advgp(Ay) = |2 - SuccPrgp(Ay) — 1|
< |2¢exec - Advpp (Ap) + 2 - SuccPrep(Ay) — 1|
< 2@exec AdVBP(Ab) + |2 . SuCCPI’Bp(.Ag) — 1|
= 2Qexec : AdVBP (Ab) + AdVBP (.Ag)

Since Advpp{Ap) <

< Advep(t,Qp) and Advep(4,) <
Advpp(t', Qy), we obtain:

AdVGP (Ag) S (2‘]exec + 1) : AdVBP (t/; Qb)

This completes the proof of Theorem 2. a

V. CONCLUSION

In this paper, we have provided the first solution to the grow-
ing problem of group key exchange over combined wired and
wireless networks, which consist of both low performance mo-
bile devices with some form of battery power and high per-
formance stationary computers with no power constraint. Our
group key exchange protocol takes only a constant number of
communication rounds and has the following key features that
distinguish it from previous constant-round protocols.

1. By evenly distributing much of the total amount of com-
putation among high performance computers, our protocol
not only avoids any potential performance bottleneck of the
system but also keeps the workload of mobile devices low
and constant regardless of the group size n.

2. Let again ns and n, be the numbers of high power users
and low power users, respectively. Then, if ng; > |/n,, our
protocol bounds the maximum computation rate per user
by O(y/n), thus becoming the first constant-round protocol
with computational complexity lower than O(n).

To provide a high level of assurance that important security
properties are satisfied in the proposed protocol, we have rig-
orously proved its security against a passive adversary in a well-
defined formal model. Therefore, applying the compiler by Katz
and Yung [20] to our protocol immediately results in a group key
exchange protocol secure against an active adversary.

A typical topic for further research is to extend our work into
a dynamic group setting where current members may leave the
group and new members may join the group at any time in an
arbitrary manner. Towards efficient key exchange in such a dy-
namic group, it is important to minimize the cost of the rekeying
operations associated with group updates. As suggested by an
anonymous referee, another direction of research is to devise
a group key exchange protocol that provides more fine-grained
resource awareness. For example, it would be interesting to see
a protocol which takes advantage of the differences in comput-
ing capabilities among four groups of users: Very weak, mobile,
stationary, and very powerful users.

ACKNOWLEDGEMENTS

This research was supported by the Postdoctoral Research
Program of Sungkyunkwan University, Korea.

REFERENCES

[1]). Nam, S. Kim, and D. Won, “Secure group communications over com-
bined wired and wireless networks,” in Proc. 2nd Int. Conf. on Trust, Pri-
vacy, and Security in Digital Business, 2005, vol. 3592, LNCS, pp. 90-99.

[2] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, vol. 22, no. 6, pp. 644-654, 1976.

[3] I Ingemarsson, D. Tang, and C. Wong, “A conference key distribution
system,” IEEE Trans. Inform. Theory, vol. 28, no. 5, pp. 714-720, 1982.

[4] E.Okamoto and K. Tanaka, “Key distribution system based on identifica-
tion information,” IEEE J. Select. Areas Commun., vol. 7, no. 4, pp. 481—
485, 1989.

[5]1 S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-based
protocols secure against dictionary attacks,” in Proc. IEEE Symp. Security
and Privacy, 1992, pp. 72-84.

[6] A.Joux, “A one round protocol for tripartite Diffie-Hellman,” J. Crypto.,
vol. 17, no. 4, pp. 263-276, 2003.

[71 K.-K.R. Choo, “Provably-secure mutual authentication and key establish-
ment protocols lounge,” 2006, available at http://sky.fit.qut.edu.au/~choo
/lounge.html.

[8] M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Proc. Crypto’93, 1993, LNCS, vol. 773, pp. 232-249.

[9] M. Bellare and P. Rogaway, “Provably secure session key distribution—the

three party case,” in Proc. 27th ACM Symp. Theory of Computing, 1995,

pp- S7-66.

V. Shoup, “On formal models for secure key exchange,” Cryptology

ePrint Archive, Report 1999/012, 1999, available at http://eprint.iacr.

org/1999/012.

M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-

change secure against dictionary attacks,” in Proc. Eurocrypt 2000, LNCS,

vol. 1807, 2000, pp. 139-155.

E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater, “Prov-

ably authenticated group Diffie-Hellman key exchange,” in Proc. 8th ACM

Conf. Computer and Commun. Security, 2001, pp. 255-264.

R. Canetti and H. Krawczyk, “Universally composable notions of key ex-

change and secure channels,” in Proc. Eurocrypt 2002, LNCS, vol. 2332,

2002, pp. 337-351.

M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Password-based authen-

ticated key exchange in the three-party setting,” in Proc. 8th Int. Work-

[10]

(1]

[12]

{131

[14]

474

[15]

[16)

(7

(18]

(19]

[20]
[211

[22]

[23]

[24]

[25]

[26]

271

[28]

[291

{30]

[31]

[32]

(33]

341

[35]

[36]

(371

[38]

[39]

{40]

(41]

[42]

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 8, NO. 4, DECEMBER 2006

shop Practice and Theory in Public Key Crypto., LNCS, vol. 3386, 2005,
pp. 65-84.

J. Katz and J. S. Shin, “Modeling insider attacks on group key-exchange
protocols,” in Proc. 12th ACM Conf. Computer and Commun. Security,
2005, pp. 180-189.

B. Blanchet, “A computationally sound mechanized prover for security
protocols,” in Proc. IEEE Symp. Security and Privacy, 2006, pp. 140-154.
K.-K. R. Choo, “Refuting security proofs for tripartite key exchange with
model checker in planning problem setting,” in Proc. 19th IEEE Computer
Security Foundations Workshop, 2006, pp. 297-308.

J. Katz, R. Ostrovsky, and M. Yung, “Efficient password-authenticated key
exchange using human-memorable passwords,” in Proc. Eurocrypt 2001,
LNCS, vol. 2045, 2001, pp. 475-494.

E. Bresson, O. Chevassut, and D. Pointcheval, “Dynamic group Diffie-
Hellman key exchange under standard assumptions,” in Proc. Eurocrypt
2002, LNCS, vol. 2332, 2002, pp. 321-336.

J. Katz and M. Yung, “Scalable protocols for authenticated group key ex-
change,” in Proc. Crypto 2003, LNCS, vol. 2729, 2003, pp. 110-125.

H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman proto-
col,” in Proc. Crypto 2005, LNCS, vol. 3621, 2005, pp. 546-566.

K.-K. R. Choo, C. Boyd, and Y. Hitchcock, “Errors in computational com-
plexity proofs for protocols,” in Proc. Asiacrypt 2005, LNCS, vol. 3788,
2005, pp. 624-643.

N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “Analyzing the
energy consumption of security protocols,” in Proc. ACM Int. Symp. Low
Power Electron. and Des., 2003, pp. 30-35.

N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile communi-
cations: the insecurity of 802.11,” in Proc. 7th ACM Conf. Mobile Com-
puting and Networking, 2001, pp. 180-189.

D. Johnston and J. Walker, “Overview of IEEE 802.16 security,” IEEE
Security Privacy, vol. 2, no. 3, pp. 4048, 2004.

S.-L. Ng and C. Mitchell, “Comments on mutual authentication and key
exchange protocols for low power wireless communications,” IEEE Com-
mun. Lett., vol. 8, no. 4, pp. 262-263, 2004.

J. Nam, S. Kim, and D. Won, “A weakness in the Bresson-Chevassut-
Essiari-Pointcheval’s group key agreement scheme for low-power mobile
devices,” IEEE Commun. Lett., vol. 9, no. 5, pp. 429431, 2005.

G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authentication
services and key agreement protocols,” IEEE J. Select. Areas Commun.,
vol. 18, no. 4, pp. 628-639, 2000.

M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer
groups,” IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 8, pp. 769-780,
2000.

W.-G. Tzeng and Z.-J. Tzeng, “Round-efficient conference key agree-
ment protocols with provable security,” in Proc. Asiacrypt 2000, LNCS,
vol. 1976, 2000, pp. 614-627.

O. Pereira and J.-J. Quisquater, “A security analysis of the Cliques pro-
tocols suites,” in Proc. 14th IEEE Computer Security Foundations Work-
shop, 2001, pp. 73-81.

E. Bresson, O. Chevassut, and D. Pointcheval, “Provably authenticated
group Diffie-Hellman key exchange—the dynamic case,” in Proc. Asi-
acrypt 2001, LNCS, vol. 2248, 2001, pp. 290-309.

E. Bresson, O. Chevassut, and D. Pointcheval, “Group Diffie-Hellman
key exchange secure against dictionary attacks,” in Proc. Asiacrypt 2002,
LNCS, vol. 2501, 2002, pp. 497-514.

C. Boyd and J.M.G. Nieto, “Round-optimal contributory conference key
agreement,” in Proc. 6th Int. Workshop Practice and Theory in Public Key
Crypto., LNCS, vol. 2567, 2003, pp. 161-174.

Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,”
ACM Trans. Inform. Syst. Security, vol. 7, no. 1, pp. 60-96, 2004.

E. Bresson and D. Catalano, “Constant round authenticated group key
agreement via distributed computation,” in Proc. 7th Int. Workshop on
Practice and Theory in Public Key Crypto., LNCS, vol. 2947, 2004,
pp. 115-129.

Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik, “On the performance
of group key agreement protocols,” ACM Trans. Inform. Syst. Security,
vol. 7, no. 3, pp. 457-488, 2004.

Y. Kim, A. Perrig. and G. Tsudik, “Group key agreement efficient in com-
munication,” IEEFE Trans. Comput., vol. 53, no. 7, pp. 905-921, 2004.

E. Bresson, O. Chevassut, A. Essiari, and D. Pointcheval, “Mutual authen-
tication and group key agreement for low-power mobile devices,” Comput.
Commun., vol. 27, no. 17, pp. 1730-1737, 2004.

H.-J. Kim, S.-M. Lee, and D. H. Lee, “Constant-round authenticated
group key exchange for dynamic groups,” in Proc. Asiacrypt 2004, LNCS,
vol. 3329, 2004, pp. 245-259.

R. Dutta and R. Barua, “Constant round dynamic group key agreement,”
in Proc. 8th Inform. Security Conf., LNCS, vol. 3650, 2005, pp. 74-88.

J. Nam, J. Lee, S. Kim, and D. Won, “DDH-based group key agreement in
a mobile environment,” J. Syst. Softw., vol. 78, no. 1, pp. 73-83, 2005.

[43]

[44]

(45]

[46]

(47]

[48}

(491
[50]
[51]

[52]
[53]
[54]

[55]

[56]

(571

[58]

M. Abdalla, E. Bresson, Q. Chevassut, and D. Pointcheval, “Password-
based group key exchange in a constant number of rounds,” in Proc.
Oth Int. Workshop Practice and Theory in Public Key Crypto., LNCS,
vol. 3958, 2006, pp. 427-442.

Q. Tang and K.-K. R. Choo, “Secure password-based authenticated group
key agreement for data-sharing peer-to-peer networks,” in Proc. 4th Int.
Conf. Applied Crypto. and Network Security, LNCS, vol. 3989, 2006,
pp. 162-177.

K. Becker and U. Wille, “Communication complexity of group key distri-
bution,” in Proc. 5th ACM Conf. Computer and Commun. Security, 1998,
pp- 1-6.

M. Burmester and Y. Desmedt, “A secure and efficient conference key
distribution system,” in Proc. Eurocrypt 1994, LNCS, vol. 950, 1994,
pp- 275-286.

J. Herranz and J. L. Villar, “An unbalanced protocol for group key ex-
change,” in Proc. Ist Int. Conf. Trust, Privacy, and Security in Digital
Business, LNCS, vol. 3184, 2004, pp. 172-180.

G. Horn, K. M. Martin, and C. J. Mitchell, “Authentication protocols
for mobile network environment value-added services,” IEEE Trans. Veh.
Technol., vol. 51, no. 2, pp. 383-392, 2002.

C. Wong, M. Gouda, and S. Lam, “Secure group communications using
key graphs,” in Proc. ACM SIGCOMM’98, 1998, pp. 68-79.

D. Wallner, E. Harder, and R. Agee, “Key management for multicast: is-
sues and architectures,” RFC 2627, IETF, 1999.

A. Perrig, D. Song, and J.D. Tygar, “ELK, a new protocol for efficient
large-group key distribution,” in Proc. IEEE Symp. Security and Privacy,
2001, pp. 247-262.

W. Diffie, P. Oorschot, and M. Wiener, “Authentication and authenticated
key exchanges,” Des., Codes, Crypto., vol. 2, no. 2, pp. 107-125, 1992.
D. Denning and G. Sacco, “Timestamps in key distribution protocols,”
Commun. ACM, vol. 24, no. 8, pp. 533-536, 1981.

M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. I1st ACM Conf. Computer and
Commun. Security, 1993, pp. 62-73.

R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” in Proc. Eurocrypt 2001, 2001,
LNCS, vol. 2045, pp. 453-474.

A. O. Freier, P. Karlton, and P. C. Kocher, “The SSL protocol version 3.0,”
Internet draft, Netscape Communications, 1996.

S. Kent and R. Atkinson, “Security architecture for the Internet protocol,”
RFC 2401, 1998.

S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270-299, 1984.

Junghyun Nam received the B.E. degree in Informa-
tion Engineering from Sungkyunkwan University, Ko-
rea, in 1997 and the M.S. degree in Computer Science
from University of Louistana, Lafayette, in 2002. His
Ph.D. degree was received in Computer Engineering
from Sungkyunkwan University, Korea, in 2006. His
current research interest is in the area of cryptography
and network security.

Dongho Won received his B.E., M.E., and Ph.D. de-
grees from Sungkyunkwan University in 1976, 1978,
and 1988, respectively. After working at ETRI (Elec-
tronics & Telecommunications Rescarch Institute)
from 1978 to 1980, he joined Sungkyunkwan Uni-
versity in 1982, where he is currently a professor of
School of Information and Communication Engineer-
ing. In the year 2002, he served as the president of KI-
ISC (Korea Institute of Information Security & Cryp-
tology). He was the program committse chairman of
the 8th International Conference on Information Se-
curity and Cryptology (ICISC 2005). His research in-

terests are on cryptology and information security.

