• Title/Summary/Keyword: pseudorandom generator

Search Result 17, Processing Time 0.071 seconds

A Study on Pseudo-random Number Generator with Fixed Length Tap unrelated to the variable sensing nodes for IoT Environments (IoT 환경에서 가변 센싱 노드들에 무관한 고정 길이 탭을 가지는 의사 난수 발생기에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.676-682
    • /
    • 2018
  • As the IoT world including WSNs develops, the number of sensor systems that sense information according to the environment based on the principle of IoT is increasing. In order to perform security for each sensor system in such a complicated environment, the security modules must be varied. These problems make hardware/software implementation difficult when considering the system efficiency and hacking/cracking. Therefore, to solve this problem, this paper proposes a pseudorandom number generator (FLT: Pseudo-random Number Generator with Fixed Length Tap unrelated to the variable sensing nodes) with a fixed-length tap that generates a pseudorandom number with a constant period, irrespective of the number of sensing nodes, and has the purpose of detecting anomalies. The proposed FLT-LFSR architecture allows the security level and overall data formatting to be kept constant for hardware/software implementations in an IoT environment. Therefore, the proposed FLT-LFSR architecture emphasizes the scalability of the network, regardless of the ease of implementation of the sensor system and the number of sensing nodes.

Analysis of Shrunken Sequences using LFSR and CA on GF(2p) (GF(2p) 위에서의 LFSR과 CA를 이용한 shrunken 수열의 분석)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Jin-Gyoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.418-424
    • /
    • 2010
  • Many researchers studied methods for the generation of maximum length pseudo random sequences. Sabater et al. analyzed shrunken sequences which are effectively generated by SG(Shrinking Generator) using CA(Cellular Automata). In this paper we propose a new SG which is called LCSG(LFSR and CA based Shrinking Generator) using an LFSR with control register and CA with generator register. The proposed shrunken sequences generated by LCSG have longer periods and high complexities than the shrunken sequences generated by the known method. And we analyze the generated sequences using LCSG.

Analysis of the Behavior of Complemented TPNCA Derived from a Linear TPNCA (선형 TPNCA로부터 얻어지는 여원 TPNCA의 행동분석)

  • 조성진;최언숙;황윤희;김한두;허성훈
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.3
    • /
    • pp.549-555
    • /
    • 2003
  • CA is cost-effective to generate pseudorandom patterns than LFSR. Based on the effectiveness of a CA based pseudorandom pattern generator, CA have been employed successfully in several applications. Especially Nongroup CA is applied to efficient hash function generation, cryptography and image compression. In this paper we analyze the properties of TPNCA and by using basic paths in the 0-tree of a linear TPNCA we analyze the structure of the state-transition graph. Also by showing the structure of the complemented CA which have the acyclic state of the 0-tree as the complement vector is isomorphic to the structure of the original TPNCA, we reduce the time in analyzing the CA-states.

  • PDF

Analysis of Shrunken-Interleaved Sequence Based on Cellular Automata (셀룰라 오토마타 기반의 수축-삽입 수열의 분석)

  • Choi, Un-Sook;Cho, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2283-2291
    • /
    • 2010
  • The shrinking generator which is one of clock-controlled generator is a very simple generator with good cryptographic properties. A nonlinear sequence generator based on two 90/150 maximum length cellular automata can generate pseudorandom sequences at each cell of cellular automata whose characteristic polynomials are same. The nonlinear sequence generated by cellular automata has a larger period and a higher linear complexity than shrunken sequence generated by LFSRs. In this paper we analyze shrunken-interleaved sequence based on 90/150 maximum length cellular automata. We show that the sequence generated by nonlinear sequence generator based on cellular automata belongs to the class of interleaved sequence. And we give an effective algorithm for reconstructing unknown bits of output sequence based on intercepted keystream bits.

Improved RFID Authentication Protocol Based on SSG (SSG기반 개선된 RFID 인증 프로토콜)

  • Park, Taek-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Recently, RFID is substituted for bar codes according to advance in the ubiquitous computing environments, but the RFID system has several problems such as security and privacy because it uses radio frequencies. Firstly, unauthorized reader can easily read the ID information of any Tag. Secondly, Attacker can easily fake the legitimate reader using the collected Tag ID information,such as the any legitimate tag. This paper proposed improved RFID authentication protocol based on SSG. SSG is organized only one LFSR and selection logic. Thus SSG is suitable for implementation of hardware logic in system with extremely limited resources such as RFID tag and it has resistance to known various attacks because of output bit stream for the use as pseudorandom generator. The proposed protocol is secure and effective because it is based on SSG.

Design and Analysis of Pseudorandom Number Generators Based on Programmable Maximum Length CA (프로그램 가능 최대길이 CA기반 의사난수열 생성기의 설계와 분석)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Han-Doo;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.319-326
    • /
    • 2020
  • PRNGs(Pseudorandom number generators) are essential for generating encryption keys for to secure online communication. A bitstream generated by the PRNG must be generated at high speed to encrypt the big data effectively in a symmetric key cryptosystem and should ensure the randomness of the level to pass through the several statistical tests. CA(Cellular Automata) based PRNGs are known to be easy to implement in hardware and to have better randomness than LFSR based PRNGs. In this paper, we design PRNGs based on PMLCA(Programable Maximum Length CA) that can generate effective key sequences in symmetric key cryptosystem. The proposed PRNGs generate bit streams through nonlinear control method. First, we design a PRNG based on an (m,n)-cell PMLCA ℙ with a single complement vector that produces linear sequences with the long period and analyze the period and the generating polynomial of ℙ. Next, we design an (m,n)-cell PC-MLCA based PRNG with two complement vectors that have the same period as ℙ and generate nonlinear sequences, and analyze the location of outputting the nonlinear sequence.

Improved Flyweight RFID Authentication Protocol

  • Vallent, Thokozani Felix;Yoon, Eun-Jun;Kim, Hyunsung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 2012
  • The widespread implementation of RFID in ubiquitous computing is constrained considerably by privacy and security unreliability of the wireless communication channel. This failure to satisfy the basic, security needs of the technology has a direct impact of the limited computational capability of the tags, which are essential for the implementation of RFID. Because the universal application of RFID means the use of low cost tags, their security is limited to lightweight cryptographic primitives. Therefore, EPCGen2, which is a class of low cost tags, has the enabling properties to support their communication protocols. This means that satisfying the security needs of EPCGen2 could ensure low cost security because EPCGen2 is a class of low cost, passive tags. In that way, a solution to the hindrance of low cost tags lies in the security of EPCGen2. To this effect, many lightweight authentication protocols have been proposed to improve the privacy and security of communication protocols suitable for low cost tags. Although many EPCgen2 compliant protocols have been proposed to ensure the security of low cost tags, the optimum security has not been guaranteed because many protocols are prone to well-known attacks or fall short of acceptable computational load. This paper proposes a remedy protocol to the flyweight RFID authentication protocol proposed by Burmester and Munilla against a desynchronization attack. Based on shared pseudorandom number generator, this protocol provides mutual authentication, anonymity, session unlinkability and forward security in addition to security against a desynchronization attack. The desirable features of this protocol are efficiency and security.

  • PDF