• 제목/요약/키워드: pseudomonotone bifunction

검색결과 4건 처리시간 0.02초

MODIFIED SUBGRADIENT EXTRAGRADIENT ALGORITHM FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

  • Dang, Van Hieu
    • 대한수학회보
    • /
    • 제55권5호
    • /
    • pp.1503-1521
    • /
    • 2018
  • The paper introduces a modified subgradient extragradient method for solving equilibrium problems involving pseudomonotone and Lipschitz-type bifunctions in Hilbert spaces. Theorem of weak convergence is established under suitable conditions. Several experiments are implemented to illustrate the numerical behavior of the new algorithm and compare it with a well known extragradient method.

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Khoa, Nguyen Minh;Thang, Tran Van
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.1019-1044
    • /
    • 2022
  • In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Olawale Kazeem Oyewole;Lateef Olakunle Jolaoso;Kazeem Olalekan Aremu
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.69-94
    • /
    • 2024
  • In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.

A NEW EXPLICIT EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH CONVEX CONSTRAINTS

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this research is to formulate a new proximal-type algorithm to solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the famous two-step extragradient algorithm that was used to solve variational inequalities in the Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on local bifunction details instead of Lipschitz constants or any line search scheme. The strong convergence theorem for the proposed algorithm is well-proven by letting mild assumptions about the bifunction. Applications of these results are presented to solve the fixed point problems and the variational inequality problems. Finally, we discuss two test problems and computational performance is explicating to show the efficiency and effectiveness of the proposed algorithm.