• Title/Summary/Keyword: prototype system

Search Result 3,935, Processing Time 0.033 seconds

Time-dependent Evolution of Accretion Disk Mass in a Black Hole Microquasar Candidate A0620-00 (블랙홀 마이크로퀘이사 후보 A0620-00의 강착원반 질량의 시간적 진화)

  • Kim, Soon-Wook
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.579-585
    • /
    • 2008
  • The time-dependent evolution of disk mass for outburst limit cycle in a black hole microquasar is calculated based on the non-linear hydrodynamic model of thermally unstable accretion disk. The physical parameters such as black hole mass, disk size and mass transfer rate are adopted to reproduce the historical 1975 outburst observed in a prototype black hole X-ray nova A0620-00. The time-dependent effect of irradiation from the central hot region to the disk is considered in two ways: direct irradiation and indirect irradiation reflected from hot accretion flow above the disk. The accretion disk thermal instability model can account for the bolometric luminosity appropriate to typical characteristics of system luminosity observed in X-ray transients during the whole cycle of the outburst evolution. The maximum mass of the accretion disk, ${\sim}4.03{\times}10^{24}g$, is achieved at the ignition of an outburst, and the minimum value, ${\sim}8.54{\times}10^{23}g$, is reached during the cooling decay to quiescence. The disk mass varies ${\sim}5$ times during outburst limit cycle.

A Framework Integrating Cost and Schedule based on BIM using IFC (IFC활용 BIM기반 공정/원가 통합관리 프레임워크)

  • Lee, Jin-Gang;Lee, Hyun-Soo;Park, Moonseo;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.53-64
    • /
    • 2013
  • In building construction project, there are numerous information or data parts across many different software applications and professional specialists. BIM (Building Information Modeling), as a medium for managing information generated during construction project, it is intended to enhance the effectiveness of construction management and reap a lot of advantages such as, automatic quantity takeoff, error-free estimation, 4D(3D+Time), 5D(4D+Cost) simulation. Nevertheless, the overall and practical effectiveness of BIM utilization is difficult to justify at this stage. While helpful, there are some limitation when BIM applied to construction management due to the differences of data processing process between BIM and work in the field, limitations of information generated from BIM object and interoperability problem among BIM application. Therefore, this paper propose a framework integrating BIM with cost-schedule information using IFC. And we construct the system prototype based on the framework and performed case study to examine the framework. The proposed framework provides the information basis for BIM based cost-schedule integration. ultimately, the framework increase the utilization of BIM and work efficiency of construction industry by supporting an understanding of information.

Development of a Three-Dimensional, Semi-Implicit Hydrodynamic Model with Wetting-and-Drying Scheme (조간대 처리기법을 포함한 3차원 Semi-Implicit 수역학모델 개발)

  • Lee, Kyung-Sun;Park, Kyeong;Oh, Jeong-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.70-80
    • /
    • 2000
  • Princeton Ocean Model (POM) is modified to construct a three-dimensional, semi-implicit hydro¬dynamic model with a wetting-and-drying scheme. The model employs semi-implicit treatment of the barotropic pressure gradient terms and the vertical mixing terms in the momentum equations, and the velocity divergence term in the vertically-integrated continuity equation. Such treatment removes the external mode and thus the mode splitting scheme in POM, allowing the semi-implicit model to use a larger time step. Applied to hypothetical systems, both the semi-implicit model and POM give nearly the same results. The semi-implicit model, however, runs approximately 4.4 times faster than POM showing its improved computational efficiency. Applied to a hypothetical system with intertidal flats, POM employing the mode splitting scheme produces noises at the intertidal flats, that propagate into the main channel resulting in unstable current velocities. Despite its larger time step, the semi-implicit model gives stable current velocities both at the intertidal flats and main channel. The semi-implicit model when applied to Kyeonggi Bay gives a good reproduction of the observed tides and tidal currents throughout the modeling domain, demonstrating its prototype applicability.

  • PDF

Using a H/W ADL-based Compiler for Fixed-point Audio Codec Optimization thru Application Specific Instructions (응용프로그램에 특화된 명령어를 통한 고정 소수점 오디오 코덱 최적화를 위한 ADL 기반 컴파일러 사용)

  • Ahn Min-Wook;Paek Yun-Heung;Cho Jeong-Hun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.275-288
    • /
    • 2006
  • Rapid design space exploration is crucial to customizing embedded system design for exploiting the application behavior. As the time-to-market becomes a key concern of the design, the approach based on an application specific instruction-set processor (ASIP) is considered more seriously as one alternative design methodology. In this approach, the instruction set architecture (ISA) for a target processor is frequently modified to best fit the application with regard to code size and speed. Two goals of this paper is to introduce our new retargetable compiler and how it has been used in ASIP-based design space exploration for a popular digital signal processing (DSP) application. Newly developed retargetable compiler provides not only the functionality of previous retargetable compilers but also visualizes the features of the application program and profiles it so that it can help architecture designers and application programmers to insert new application specific instructions into target architecture for performance increase. Given an initial RISC-style ISA for the target processor, we characterized the application code and incrementally updated the ISA with more application specific instructions to give the compiler a better chance to optimize assembly code for the application. We get 32% performance increase and 20% program size reduction using 6 audio codec specific instructions from retargetable compiler. Our experimental results manifest a glimpse of evidence that a higgly retargetable compiler is essential to rapidly prototype a new ASIP for a specific application.

Development of a 300W Generator for Lightweight Wind Turbine

  • Lee, Hee-Kune;Lee, Hee-Joon;Kim, Sun-Hyung
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.181-188
    • /
    • 2017
  • As a population of leisure activities grows and diversifies, there is a great demand for portable and environment-friendly power generation systems. A small wind power generation system is emerging as a suitable power generation equipment to meet these needs. The most important thing when developing a small portable wind turbine is to reduce the weight of the generator and increase the efficiency. The existing 300W wind turbine generator weighs about 10kg, which is heavy to carry. Therefore, a new generator weighing less than 4kg to make it easy to carry with high efficiency has been developed. In addition, considering complicated characteristics of wind volume and topography of Korea, a small wind turbine that can be used in urban and rural areas individually was constructed. Through basic designing and optimization, the lightweight and efficient generator was manufactured. It is a 300W wind turbine designed and fabricated with reduced weight as a prototype. The average output voltage of the generator was 24.7V at 900rpm no-load test. On a load test with the average line voltage 36.8V and the average phase current 2.62A, when the mechanical input was 339.84W, an average voltage output of the generator was measured as 289.5W with efficiency of 85.18%. The generator weight was 3.84kg.

Case of Dynamic Performance Optimization for Hydraulic Drifter (유압 드리프터의 동적성능 최적화 사례)

  • Noh, Dae-kyung;Lee, Dae-Hee;Jang, Joo-Sup;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.35-48
    • /
    • 2019
  • Domestic hydraulic drifters till now have been developed by benchmarking products from overseas leading companies. However, they do not have excellent impact performance as they are not suitable for characteristics (large flow rate and low pressure) of Korean hydraulic drill power pack, and therefore, research on the optimum design has not made much headway. This study performs multi-objective function optimization for hydraulic drifters whose capacity has been redesigned to deal with the large flow rate, and also with the help of this function, it aims to improve impact power and reduce supply and surge pressure. A summary of the research study is as follows: First, we set goals for improving impact power, supply pressure, and surge pressure, and then perform multi-objective function optimization on them. After that, we secure the reliability of the optimized analytical model by comparing the test results of the prototype built by the optimized design with the analysis results of the analytical model. This study used SimulationX, that is the hydraulic system analysis software, and EasyDesign, which is a multi-objective function optimization program. Through this research, we have achieved the results that satisfy the goal of developing high power drifters suitable for Korean type hydraulic drills.

A Cross-check based Vulnerability Analysis Method using Static and Dynamic Analysis (정적 및 동적 분석을 이용한 크로스 체크기반 취약점 분석 기법)

  • Song, Jun-Ho;Kim, Kwang-Jik;Ko, Yong-Sun;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.863-871
    • /
    • 2018
  • Existing vulnerability analysis tools are prone to missed detections, incorrect detections, and over-detection, which reduces accuracy. In this paper, cross-checking based on a vulnerability detection method using static and dynamic analysis is proposed, which develops and manages safe applications and can resolve and analyze these problems. Risks due to vulnerabilities are computed, and an intelligent vulnerability detection technique is used to improve accuracy and evaluate risks under the final version of the application. This helps the development and execution of safe applications. Through incorporation of tools that use static analysis and dynamic analysis techniques, our proposed technique overcomes weak points at each stage, and improves the accuracy of vulnerability detection. Existing vulnerability risk-evaluation systems only evaluate self-risks, whereas our proposed vulnerability risk-evaluation system reflects the vulnerability of self-risk and the detection accuracy in a complex fashion to evaluate relative. Our proposed technique compares and analyzes existing analysis tools, such as lists for detections and detection accuracy based on the top 10 items of SANS at CWE. Quantitative evaluation systems for existing vulnerability risks and the proposed application's vulnerability risks are compared and analyzed. We developed a prototype analysis tool using our technique to test the application's vulnerability detection ability, and to show that our proposed technique is superior to existing ones.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.

Design of Low-cost Automated Ventilator Using AMBU-bag (암부백을 이용한 저가형 자동 인공호흡기 설계 및 제작)

  • Shin, Hee-Bin;Lee, Hyo-Kyeong;Oh, Ga-Young
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • This study proposes the design and implementation of a low-cost emergency ventilator which can be helpful during the COVID-19 pandemic where the supply of automatic ventilators is not smooth compared with the urgent demand worldwide. Easy implementation and lower price were made possible by using AMBU-bag and off-the-shelf embedded micro-controller board. Moreover, while 3D printing is used by companies and experts around the world to build prototype hardware, materials which are readily available from surrounding environments so that people in countries where it is difficult to access many advanced technologies could manufacture the system. The design features AMBU-bag automation, not use 3D printing, and it can contrl speed. By allowing speed control, ventilation can be performed according to the conditions of the patient being used. A complementary point in the study is that it is difficult to fix the start point of the wiper motor used first. A method for complementing this is a method for replacing the brush DC motor with a position feedback function. Secondly, the AMBU-bag may wear out in the long-term process of compressing the AMBU-bag because the arm and the fixing frame are made of wood. To complement this, the part of fixing frame and arm parts that the AMBU-bag touches need to be wrapped in a material such as silicon to minimize friction.

Development of an Automated Layout Robot for Building Structures (건축물 골조공사 먹매김 시공자동화 로봇 프로토타입 개발)

  • Park, Gyuseon;Kim, Taehoon;Lim, Hyunsu;Oh, Jhonghyun;Cho, Kyuman
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.689-700
    • /
    • 2022
  • Layout work for building structures requires high precision to construct structural elements in the correct location. However, the accuracy and precision of the layout position are affected by the worker's skill, and productivity can be reduced when there is information loss and error. To solve this problem, it is necessary to automate the overall layout operation and introduce information technology, and layout process automation using construction robots can be an effective means of doing this. This study develops a prototype of an automated layout robot for building structures and evaluates its basic performance. The developed robot is largely composed of driving, marking, sensing, and control units, and is designed to enable various driving methods, and movement and rotation of the marking unit in consideration of the environment on structural work. The driving and marking performance experiments showed satisfactory performance in terms of driving distance error and marking quality, while the need for improvement in terms of some driving methods and marking precision was confirmed. Based on the results of this study, we intend to continuously improve the robot's performance and establish an automation system for overall layout work process.