• Title/Summary/Keyword: proteomic analysis

Search Result 366, Processing Time 0.038 seconds

LC-MS/MS-based Proteomic Analysis to Identify Protein Phosphorylation in Emiliania huxleyi

  • Duong, Van-An;Nam, Onyou;Jin, EonSeon;Seo, Jae-Min;Park, Jong-Moon;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.163-171
    • /
    • 2021
  • Emiliania huxleyi is a marine phytoplankton that plays a critical role in global carbon and sulfur cycling. The genome of E. huxleyi has been sequenced, and an in-depth proteomic profile of this organism has been reported. This study analyzed the phosphoproteome of E. huxleyi and identified its changes under calcium-limited conditions. A TiO2 microcolumn was used for phosphopeptide enrichment, followed by liquid chromatography-tandem mass spectrometry analysis. Overall, we identified 7,010 phosphorylated sites on 3,355 phosphopeptides associated with 2,929 phosphoproteins in E. huxleyi. Quantitative analysis revealed changes in the phosphoproteome in E. huxleyi when ambient conditions changed to calcium-limited conditions, notably the phosphorylation of some transporters was altered. This study provides an overview of protein phosphorylation in E. huxleyi and paves the way for further investigations of its biological functions.

Identification of Potential DREB2C Targets in Arabidopsis thaliana Plants Overexpressing DREB2C Using Proteomic Analysis

  • Lee, Kyunghee;Han, Ki Soo;Kwon, Young Sang;Lee, Jung Han;Kim, Sun Ho;Chung, Woo Sik;Kim, Yujung;Chun, Sung-Sik;Kim, Hee Kyu;Bae, Dong-Won
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.383-388
    • /
    • 2009
  • The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature ($22^{\circ}C$), but could not detect any differences between the proteomes of wild-type and 35S: DREB2C plants. The transcript level of DREB2C in 35S: DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.

Pressure Cycling Technology-assisted Protein Digestion for Efficient Proteomic Analysis

  • Choi, Hyun-Su;Lee, Sang-Kwang;Kwon, Kyung-Hoon;Yoo, Jong-Shin;Ji, Kelly;Kim, Jin-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.599-604
    • /
    • 2011
  • In typical proteomic analysis, trypsin digestion is one of the most time-consuming steps. Conventional proteomic sample preparation methods use an overnight trypsin digestion method. In this study, we compared high-pressure cycling technology (PCT) during enzyme digestion for proteome analysis to the conventional method. We examined the effect of PCT on enzyme activity at temperatures of 25, 37, and $50^{\circ}C$. Although a fast digestion (1 h) was used for the standard protein mixture analysis, the PCT-assisted method with urea showed better results for protein sequence coverage and the number of peptides identified compared with the conventional method. There was no significant difference between temperatures for PCT-assisted digestion; however, we selected PCT-assisted digestion with urea at $25^{\circ}C$ as an optimized method for fast enzyme digestion, based on peptide carbamylation at these conditions. The optimized method was used for stem cell proteome analysis. We identified 233, 264 and 137 proteins using the conventional method with urea at $37^{\circ}C$ for 16h, the PCT-assisted digestion with urea at $25^{\circ}C$ for 1 h, and the non-PCT-assisted digestion with urea at $25^{\circ}C$ for 1 h, respectively. A comparison of these results suggests that PCT enhanced the enzyme digestion by permitting better access to cleavage sites on the proteins.

Proteomic Analysis of Colonic Mucosal Tissue from Tuberculous and Ulcerative Colitis Patients

  • Kwon, Seong-Chun;Won, Kyung-Jong;Jung, Seoung-Hyo;Lee, Kang-Pa;Lee, Dong-Youb;Park, Eun-Seok;Kim, Bok-Yung;Cheon, Gab-Jin;Han, Koon-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.193-198
    • /
    • 2012
  • Changes in the expression profiles of specific proteins leads to serious human diseases, including colitis. The proteomic changes related to colitis and the differential expression between tuberculous (TC) and ulcerative colitis (UC) in colon tissue from colitis patients has not been defined. We therefore performed a proteomic analysis of human TC and UC mucosal tissue. Total protein was obtained from the colon mucosal tissue of normal, TC, and UC patients, and resolved by 2-dimensional electrophoresis (2-DE). The results were analyzed with PDQuest using silver staining. We used matrix-assisted laser desorption ionization time-of-flight/time-of-flight spectrometry (MALDI TOF/TOF) to identify proteins differentially expressed in TC and UC. Of the over 1,000 proteins isolated, three in TC tissue and two in UC tissue displayed altered expression when compared to normal tissue. Moreover, two proteins were differentially expressed in a comparative analysis between TC and UC. These were identified as mutant ${\beta}$-actin, ${\alpha}$-enolase and Charcot-Leyden crystal protein. In particular, the expression of ${\alpha}$-enolase was significantly greater in TC compared with normal tissue, but decreased in comparison to UC, implying that ${\alpha}$-enolase may represent a biomarker for differential diagnosis of TC and UC. This study therefore provides a valuable resource for the molecular and diagnostic analysis of human colitis.

Differentially expressed serum proteins associated with calcium regulation and hypocalcemia in dairy cows

  • Shu, Shi;Bai, Yunlong;Wang, Gang;Xiao, Xinhuan;Fan, Ziling;Zhang, Jiang;Zhao, Chang;Zhao, Yang;Xia, Cheng;Zhang, Hongyou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.893-901
    • /
    • 2017
  • Objective: Hypocalcemia is an important metabolic disease of dairy cows during the transition period, although the effect of hypocalcemia on biological function in dairy cows remains unknown. Methods: In this study, proteomic, mass spectrum, bioinformatics and western blotting were employed to identify differentially expressed proteins related to serum Ca concentration. Serum samples from dairy cows were collected at three time points: 3rd days before calving (day -3), the day of calving (day 0), and 3rd days after calving (day +3). According to the Ca concentration on day 0, a total of 27 dairy cows were assigned to one of three groups (clinical, subclinical, and healthy). Samples collected on day -3 were used for discovery of differentially expressed proteins, which were separated and identified via proteomic analysis and mass spectrometry. Bioinformatics analysis was performed to determine the function of the identified proteins (gene ontology and pathway analysis). The differentially expressed proteins were verified by western blot analysis. Results: There were 57 differential spots separated and eight different proteins were identified. Vitamin D-binding protein precursor (group-specific component, GC), alpha-2-macroglobulin (A2M) protein, and apolipoprotein A-IV were related to hypocalcemia by bioinformatics analysis. Due to its specific expression (up-regulated in clinical hypocalcemia and down-regulated in subclinical hypocalcemia), A2M was selected for validation. The results were consistent with those of proteomic analysis. Conclusion: A2M was as an early detection index for distinguishing clinical and subclinical hypocalcemia. The possible pathogenesis of clinical hypocalcemia caused by GC and apolipoprotein A-IV was speculated. The down-regulated expression of GC was a probable cause of the decrease in calcium concentration.

DNA and Proteomic Analysis of Ginseng Radix Rubra Herbal-acupuncture Solution(GRR-HAS) on Gene Expression in HepG2 Carcinomar Cells (홍삼약침액(紅蔘藥鍼液)의 DNA와 단백질 발현(發顯)에 미치는 영향(影響))

  • Won, Eun-Ju;Lee, Bong-Hyo;Lim, Seong-Chul;Jung, Tae-Young;Seo, Jung-Chul;Lee, Kyung-Min
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.177-190
    • /
    • 2006
  • Objectives : It has long been known about the anticancer effect of GRR-HAS, however, it has not been systemically determined the differentially regulated genes by GRR-HAS in cancer cells. The purpose of this study is to screen the GRR-HAS mediated differentially expressed genes in cancer cells such as HepG2 hepatoma cell lines. Oligonucleotide microarray and proteomic approaches were employed to screen the differential expression genes. Methods : GRR~HAS was prepared by boiling and stored at $-70^{\circ}C$ until use. Cells were treated with various concentrations of GRR-HAS (0.1, 0.5, 1.5, 10, $20mg/m{\ell}$) for 24 h. Cell toxicity was tested by MTT assay. To screen the differentially expressed genes in cancer cells, cells were treated with $1.5mg/m{\ell}$ of GRR-HAS. For oligonucleotide microarray assay, total RNA was used for gene expression analysis using oligonucleotide genechip (Human genome Ul33 Plus 2.0., Affimatrix Co.). For proteomic analysis, total protein was analyzed by 2D gel electrophoresis and Q-TOF mass spectrometer. Results : It has no cytotoxic effects on both HepG2 cells in all concentrations(0.1, 0.5, 1.5, 10,$20mg/m{\ell}$). In oligonucleotide microarray assay, the number of more than twofold differentially regulated known genes was 320 with 6 up-regulated and 314 down-regulated genes in HepG2 cells. In proteomic analysis, three spots were identified by 2D-gel electrophoresis and Q-TOF analysis. One down -regulated protein was protein disulfide isomerase and up-regulated proteins were fatty acid binding protein 1 and 14-3-3 gan1lTIa protein by $1.5mg/m{\ell}$ of CRR-HAS. Discussion : This study showed the comprehensive gene expression analysis using oligonucleotide microarray for the screening of GRR-HAS mediated differentially regulated genes. These results will provide a better application of GRR-HAS in cancer field and drug target development.

  • PDF

Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality

  • Mushtaq, Roohi;Katiyar, Sanjay;Bennett, John
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.227-232
    • /
    • 2008
  • Drought stress is one of the major abiotic stresses in agriculture worldwide. We report here a proteomic approach to investigate the impact of post-fertilization drought on grain quality in rice seed endosperm (Oryza sativa cv. IR-64). Plants were stressed for 4 days at 3 days before heading. Total proteins of endosperm were extracted and separated by two-dimensional gel electrophoresis. Not many protein spots showed differential accumulation in drought-stressed samples. More than 400 protein spots were reproducibly detected, including three that were up-regulated and five down-regulated. Mass spectrometry analysis and database searching helped us to identify six spots representing different proteins. Functionally, the identified proteins were related to protein synthesis and carbohydrate metabolism, such as Granule-Bound Starch Synthase (GBSS, Wx protein), which is thought to play a very important role in starch biosynthesis and quality, a very crucial factor in determining rice grain quality.

  • PDF

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli

  • Lee, Jongchan;Heo, Lynn;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.673-680
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.