DOI QR코드

DOI QR Code

Identification of Potential DREB2C Targets in Arabidopsis thaliana Plants Overexpressing DREB2C Using Proteomic Analysis

  • Lee, Kyunghee (The Aging-associated Vascular Disease Research Center and Department of Microbiology, Yeungnam University College of Medicine) ;
  • Han, Ki Soo (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University) ;
  • Kwon, Young Sang (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University) ;
  • Lee, Jung Han (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University) ;
  • Kim, Sun Ho (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chung, Woo Sik (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Yujung (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chun, Sung-Sik (School of Food Science, International University of Korea) ;
  • Kim, Hee Kyu (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University) ;
  • Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University)
  • Received : 2009.07.13
  • Accepted : 2009.09.21
  • Published : 2009.10.31

Abstract

The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature ($22^{\circ}C$), but could not detect any differences between the proteomes of wild-type and 35S: DREB2C plants. The transcript level of DREB2C in 35S: DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Agarwal, P.K., Agarwal, P., Reddy, M.K., and Sopory, S.K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263-1274 https://doi.org/10.1007/s00299-006-0204-8
  2. Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A. Carpentier, R., and Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541-550 https://doi.org/10.1007/s11120-008-9331-0
  3. Baek, D., Jin, Y., Jeong, J.C., Lee, H.J., Moon, H., Lee, J., Shin, D., Kang, C.H., Kim, D.H., Nam, J., et al. (2008). Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry 69, 333-338 https://doi.org/10.1016/j.phytochem.2007.07.027
  4. Blum, H., Beier, H., and Gross, H.J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99 https://doi.org/10.1002/elps.1150080203
  5. Burke, J.J. (2001). Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plant. 112, 167-170 https://doi.org/10.1034/j.1399-3054.2001.1120203.x
  6. Cai, W., Ma, J., Guo, J., and Zhang, L. (2008). Function of ROC4 in the efficient repair of photodamaged photosystem II in Arabidopsis. Photochem. Photobiol. 84, 1343-1348 https://doi.org/10.1111/j.1751-1097.2008.00448.x
  7. Chen, H., and Xiong, L. (2005). Pyridoxine is required for postembryonic root development and tolerance to osmotic and oxidative stresses. Plant J. 44, 396-408 https://doi.org/10.1111/j.1365-313X.2005.02538.x
  8. Denslow, S.A., Rueschhoff, E.E., and Daub, M.E. (2007). Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiol. Biochem. 45, 152-161 https://doi.org/10.1016/j.plaphy.2007.01.007
  9. Guy, C., Kaplan, F., Kopka, J., Selbig, J., and Hincha, D.K. (2008). Metabolomics of temperature stress. Physiol. Plant 132, 220-235
  10. Hong, B., Ma, C., Yang, Y., Wang, T., Yamaguchi-Shinozaki, K., and Gao, J. (2009). Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol. 70, 231-240 https://doi.org/10.1007/s11103-009-9468-z
  11. Huang, B., and Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. J. Integr. Plant Biol. 50, 1230-1237 https://doi.org/10.1111/j.1744-7909.2008.00735.x
  12. Kim, S.T., Cho, K.S., Jang, Y.S., and Kang, K.Y. (2001). Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 10, 2103-2109
  13. Lee, K., Kye, M., Jang, J.S., Lee, O.J., Kim, T., and Lim, D. (2004). Proteomic analysis revealed a strong association of a high level of alpha1-antitrypsin in gastric juice with gastric cancer. Proteomics 4, 3343-3352 https://doi.org/10.1002/pmic.200400960
  14. Lee, D.G., Ahsan, N., Lee, S.H., Kang, K.Y., Bahk, J.D., Lee, I.J., and Lee, B.H. (2007a). A proteomic approach in analyzing heatresponsive proteins in rice leaves. Proteomics 7, 3369-3383 https://doi.org/10.1002/pmic.200700266
  15. Lee, S.M., Kim, H.S., Han, H.J., Moon, B.C., Kim, C.Y., Harper, J.F., and Chung, W.S. (2007b). Identification of a calmodulinregulated autoinhibited $Ca^{2+}$-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 581, 3943-3949 https://doi.org/10.1016/j.febslet.2007.07.023
  16. Lim, C.J., Yang, K.A., Hong, J.K., Choi, J.S., Yun, D.J., Hong, J.C., Chung, W.S., Lee, S.Y., Cho, M.J., and Lim, C.O. (2006). Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J. Plant Res. 119, 373-383 https://doi.org/10.1007/s10265-006-0285-z
  17. Lim, C.J., Hwang, J.E., Chen, H., Hong, J.K., Yang, K.A., Choi, M.S., Lee, K.O., Chung, W.S., Lee, S.Y., and Lim, C.O. (2007). Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem. Biophys. Res. Commun. 362, 431-436 https://doi.org/10.1016/j.bbrc.2007.08.007
  18. Lippuner, V., Chou, I.T., Scott, S.V., Ettinger, W.F., Theg, S.M., and Gasser, C.S. (1994). Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J. Biol. Chem. 269, 7863-7868
  19. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S. Yamaguchi- Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406 https://doi.org/10.1105/tpc.10.8.1391
  20. McCabe, P.F., and Leaver, C.J. (2000). Programmed cell death in cell cultures. Plant Mol. Biol. 44, 359-368 https://doi.org/10.1023/A:1026500810877
  21. Moons, A. (2003). Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stressinduced and differentially salt stress-responsive in rice roots. FEBS Lett. 553, 427-432 https://doi.org/10.1016/S0014-5793(03)01077-9
  22. Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., and Hisabori, T. (2003). Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cistrans isomerase activity. J. Biol. Chem. 278, 31848-31852 https://doi.org/10.1074/jbc.M304258200
  23. Rao, D., Momcilović, I., Kobayashi, S., Callegari, E., and Ristic, Z. (2004). Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. Eur. J. Biochem. 271, 3684-3692 https://doi.org/10.1111/j.1432-1033.2004.04309.x
  24. Ristic, Z., Momcilović, I., Fu, J., Callegari, E., and DeRidder, B.P. (2007). Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. J. Plant Physiol. 164, 1564-1571 https://doi.org/10.1016/j.jplph.2007.07.008
  25. Rose, J.K., Bashir, S., Giovannoni, J.J., Jahn, M.M., and Saravanan, R.S. (2004). Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J. 39, 715-733 https://doi.org/10.1111/j.1365-313X.2004.02182.x
  26. Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 103, 18822-18827 https://doi.org/10.1073/pnas.0605639103
  27. Senthil-Kumar, M., Kumar, G., Srikanthbabu, V., and Udayakumar, M. (2007). Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J. Plant Physiol. 164, 111-125 https://doi.org/10.1016/j.jplph.2006.09.009
  28. Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250, 161-170 https://doi.org/10.1006/bbrc.1998.9267
  29. Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035-1040 https://doi.org/10.1073/pnas.94.3.1035
  30. Titiz, O., Tambasco-Studart, M., Warzych, E., Apel, K., Amrhein, N., Laloi, C., and Fitzpatrick, T.B. (2006). PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J. 48, 933-946 https://doi.org/10.1111/j.1365-313X.2006.02928.x
  31. Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199-223 https://doi.org/10.1016/j.envexpbot.2007.05.011
  32. Weijers, D., Franke-van Dijk, M., Vencken, R.J., Quint, A., Hooykaas, P., and Offringa, R. (2001). An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128, 4289-4299
  33. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264 https://doi.org/10.1105/tpc.6.2.251

Cited by

  1. Korean plant proteomics: pioneers in plant stress physiology vol.38, pp.2, 2011, https://doi.org/10.5010/jpb.2011.38.2.151
  2. Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress vol.33, pp.2, 2009, https://doi.org/10.1007/s10059-012-2188-2
  3. Effects of high temperature on photosynthesis and related gene expression in poplar vol.14, pp.None, 2009, https://doi.org/10.1186/1471-2229-14-111
  4. Overexpression of Arabidopsis Dehydration-Responsive Element-Binding Protein 2A Confers Tolerance to Salinity Stress to Transgenic Canola vol.17, pp.5, 2009, https://doi.org/10.3923/pjbs.2014.619.629