Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.09.2021.0139

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli  

Lee, Jongchan (Department of Plant Science and Technology, Chung-Ang University)
Heo, Lynn (Department of Plant Science and Technology, Chung-Ang University)
Han, Sang-Wook (Department of Plant Science and Technology, Chung-Ang University)
Publication Information
The Plant Pathology Journal / v.37, no.6, 2021 , pp. 673-680 More about this Journal
Abstract
Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.
Keywords
Acidovorax citrulli; proteomics; pyridoxal phosphate-dependent aminotransferase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. 2018. involvement of hrpX and hrpG in the virulence of Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits. Front. Microbiol. 9:507.   DOI
2 Johnson, K. L. and Walcott, R. R. 2013. Quorum sensing contributes to seed-to-seedling transmission of Acidovorax citrulli on watermelon. J. Phytopathol. 161:562-573.   DOI
3 Kai, K., Ohnishi, H., Kiba, A., Ohnishi, K. and Hikichi, Y. 2016. Studies on the biosynthesis of ralfuranones in Ralstonia solanacearum. Biosci. Biotechnol. Biochem. 80:440-444.   DOI
4 Bosch, M., Garrido, E., Llagostera, M., Perez de Rozas, A. M., Badiola, I. and Barbe, J. 2002. Pasteurella multocida exbB, exbD and tonB genes are physically linked but independently transcribed. FEMS Microbiol. Lett. 210:201-208.   DOI
5 Bahar, O. and Burdman, S. 2010. Bacterial fruit blotch: a threat to the cucurbit industry. Isr. J. Plant Sci. 58:19-31.   DOI
6 Kim, M., Lee, J., Heo, L. and Han, S.-W. 2020b. Putative bifunctional chorismate mutase/prephenate dehydratase contributes to the virulence of Acidovorax citrulli. Front. Plant Sci. 11:569552.   DOI
7 Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36.   DOI
8 Song, Y.-R., Hwang, I. S. and Oh, C.-S. 2020. Natural variation in virulence of Acidovorax citrulli isolates that cause bacterial fruit blotch in watermelon, depending on infection routes. Plant Pathol. J. 36:29-42.   DOI
9 Jansen, R. S., Mandyoli, L., Hughes, R., Wakabayashi, S., Pinkham, J. T., Selbach, B., Guinn, K. M., Rubin, E. J., Sacchettini, J. C. and Rhee, K. Y. 2020. Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nat. Commun. 11:1960.   DOI
10 Abdollahi, S., Rasooli, I. and Mousavi Gargari, S. L. 2018. The role of TonB-dependent copper receptor in virulence of Acinetobacter baumannii. Infect. Genet. Evol. 60:181-190.   DOI
11 Kim, M., Lee, J., Heo, L., Lee, S. J. and Han, S.-W. 2021. Proteomic and phenotypic analyses of a putative glycerol3-phosphate dehydrogenase required for virulence in Acidovorax citrulli. Plant Pathol. J. 37:36-46.   DOI
12 Johnson, K. L., Minsavage, G. V., Le, T., Jones, J. B. and Walcott, R. R. 2011. Efficacy of a nonpathogenic Acidovorax citrulli strain as a biocontrol seed treatment for bacterial fruit blotch of cucurbits. Plant Dis. 95:697-704.   DOI
13 Johnson, T. L., Waack, U., Smith, S., Mobley, H. and Sandkvist, M. 2015. Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness. J. Bacteriol. 198:711-719.   DOI
14 Kim, D. H., Nguyen, Q. T. and Yang, J. K. 2020a. Biochemical characterization of homoserine dehydrogenase from Pseudomonas aeruginosa. Bull. Korean Chem. Soc. 41:127-132.   DOI
15 King, A. M., Pretre, G., Bartpho, T., Sermswan, R. W., Toma, C., Suzuki, T., Eshghi, A., Picardeau, M., Adler, B. and Murray, G. L. 2014. High-temperature protein G is an essential virulence factor of Leptospira interrogans. Infect. Immun. 82:1123-1131.   DOI
16 Ndrepepa, G. and Kastrati, A. 2019. Alanine aminotransferase-a marker of cardiovascular risk at high and low activity levels. J. Lab. Precis. Med. 4:29.   DOI
17 Ollis, A. A. and Postle, K. 2012. Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J. Bacteriol. 194:3078-3087.   DOI
18 Chew, S. Y., Chee, W. J. Y. and Than, L. T. L. 2019. The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: perspectives from Candida albicans and Saccharomyces cerevisiae. J. Biomed. Sci. 26:52.   DOI
19 Bahar, O., Goffer, T. and Burdman, S. 2009. Type IV Pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant-Microbe Interact. 22:909-920.   DOI
20 Burdman, S. and Walcott, R. 2012. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol. Plant Pathol. 13:805-815.   DOI
21 Guo, W., Cui, Y.-P., Li, Y.-R., Che, Y.-Z., Yuan, L., Zou, L.-F., Zou, H.-S. and Chen, G.-Y. 2012. Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology 158:505-518.   DOI
22 Sanders, D. A., Mendez, B. and Koshland, D. E. Jr. 1989. Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. J. Bacteriol. 171:6271-6278.   DOI
23 Schertl, P. and Braun, H.-P. 2014. Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5:163.   DOI
24 Cui, J., Ma, C., Ye, G., Shi, Y., Xu, W., Zhong, L., Wang, J., Yin, Y., Zhang, X. and Wang, H. 2017. DnaJ (hsp40) of Streptococcus pneumoniae is involved in bacterial virulence and elicits a strong natural immune reaction via PI3K/JNK. Mol. Immunol. 83:137-146.   DOI
25 De Maio, A. 1999. Heat shock proteins: facts, thoughts, and dreams. Shock 11:1-12.   DOI
26 Hu, Y.-H., Dang, W. and Sun, L. 2012. A TonB-dependent outer membrane receptor of Pseudomonas fluorescens: virulence and vaccine potential. Arch. Microbiol. 194:795-802.   DOI
27 Felgner, S., Frahm, M., Kocijancic, D., Rohde, M., Eckweiler, D., Bielecka, A., Bueno, E., Cava, F., Abraham, W.-R., Curtiss, R., 3rd, Haussler, S., Erhardt, M. and Weiss, S. 2016. aroAdeficient Salmonella enterica serovar typhimurium is more than a metabolically attenuated mutant. Mbio 7:e01220-16.
28 Fernie, A. R., Carrari, F. and Sweetlove, L. J. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7:254-261.   DOI
29 Fujita, M., Mori, K., Hara, H., Hishiyama, S., Kamimura, N. and Masai, E. 2019. A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun. Biol. 2:432.   DOI
30 Giltner, C. L., Habash, M. and Burrows, L. L. 2010. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J. Mol. Biol. 398:444-461.   DOI
31 Hamblin, P. A., Bourne, N. A. and Armitage, J. P. 1997. Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli. Mol. Microbiol. 24:41-51.   DOI
32 Wadhams, G. H. and Armitage, J. P. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:1024-1037.   DOI
33 Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M. 2nd. and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176.   DOI
34 Park, H.-J., Seong, H. J., Lee, J., Heo, L., Sul, W. J. and Han, S.- W. 2021. Two DNA methyltransferases for site-Specific 6mA and 5mC DNA modification in Xanthomonas euvesicatoria. Front. Plant Sci. 12:621466.   DOI
35 Shin, Y.-C., Yun, H. and Park, H. H. 2018. Structural dynamics of the transaminase active site revealed by the crystal structure of a co-factor free omega-transaminase from Vibrio fluvialis JS17. Sci. Rep. 8:11454.   DOI
36 Yang, X., Thornburg, T., Suo, Z., Jun, S., Robison, A., Li, J., Lim, T., Cao, L., Hoyt, T., Avci, R. and Pascual, D. W. 2012. Flagella overexpression attenuates Salmonella pathogenesis. PLoS ONE 7:e46828.   DOI
37 Goncalves, I. L., Mielniczki-Pereira, A. A., Piovezan Borges, A. C. and Valduga, A. T. 2016. Metabolic modeling and comparative biochemistry in glyoxylate cycle. Acta Sci. Biol. Sci. 38:1-6.
38 Han, X., Sun, R., Sandalova, T. and Achour, A. 2018. Structural and functional studies of Spr1654: an essential aminotransferase in teichoic acid biosynthesis in Streptococcus pneumoniae. Open Biol. 8:170248.   DOI
39 Hafkenscheid, J. C. M. and Dijt, C. C. M. 1979. Determination of serum aminotransferases: activation by pyridoxal-5'-phosphate in relation to substrate concentration. Clin. Chem. 25:55-59.   DOI