Browse > Article
http://dx.doi.org/10.1007/s10059-009-0154-4

Identification of Potential DREB2C Targets in Arabidopsis thaliana Plants Overexpressing DREB2C Using Proteomic Analysis  

Lee, Kyunghee (The Aging-associated Vascular Disease Research Center and Department of Microbiology, Yeungnam University College of Medicine)
Han, Ki Soo (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University)
Kwon, Young Sang (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University)
Lee, Jung Han (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University)
Kim, Sun Ho (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Chung, Woo Sik (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Kim, Yujung (Enviromental Biotechnology National Core Research Center and Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Chun, Sung-Sik (School of Food Science, International University of Korea)
Kim, Hee Kyu (Department of Applied Biology and Enviromental Science and Research Institute of Life Science, Gyeongsang National University)
Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University)
Abstract
The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature ($22^{\circ}C$), but could not detect any differences between the proteomes of wild-type and 35S: DREB2C plants. The transcript level of DREB2C in 35S: DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.
Keywords
Arabidopsis; dehydration responsive element; DREB2C; proteomic analysis; thermotolerance;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Agarwal, P.K., Agarwal, P., Reddy, M.K., and Sopory, S.K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263-1274   DOI   ScienceOn
2 Cai, W., Ma, J., Guo, J., and Zhang, L. (2008). Function of ROC4 in the efficient repair of photodamaged photosystem II in Arabidopsis. Photochem. Photobiol. 84, 1343-1348   DOI   ScienceOn
3 Guy, C., Kaplan, F., Kopka, J., Selbig, J., and Hincha, D.K. (2008). Metabolomics of temperature stress. Physiol. Plant 132, 220-235   PUBMED
4 Kim, S.T., Cho, K.S., Jang, Y.S., and Kang, K.Y. (2001). Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 10, 2103-2109
5 Lee, S.M., Kim, H.S., Han, H.J., Moon, B.C., Kim, C.Y., Harper, J.F., and Chung, W.S. (2007b). Identification of a calmodulinregulated autoinhibited $Ca^{2+}$-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 581, 3943-3949   DOI   ScienceOn
6 Lippuner, V., Chou, I.T., Scott, S.V., Ettinger, W.F., Theg, S.M., and Gasser, C.S. (1994). Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J. Biol. Chem. 269, 7863-7868   PUBMED
7 Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S. Yamaguchi- Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406   DOI   ScienceOn
8 Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., and Hisabori, T. (2003). Chloroplast cyclophilin is a target protein of thioredoxin. Thiol modulation of the peptidyl-prolyl cistrans isomerase activity. J. Biol. Chem. 278, 31848-31852   DOI   ScienceOn
9 Rose, J.K., Bashir, S., Giovannoni, J.J., Jahn, M.M., and Saravanan, R.S. (2004). Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J. 39, 715-733   DOI   ScienceOn
10 Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250, 161-170   DOI   ScienceOn
11 McCabe, P.F., and Leaver, C.J. (2000). Programmed cell death in cell cultures. Plant Mol. Biol. 44, 359-368   DOI   ScienceOn
12 Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035-1040   DOI   ScienceOn
13 Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199-223   DOI   ScienceOn
14 Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264   DOI   ScienceOn
15 Rao, D., Momcilović, I., Kobayashi, S., Callegari, E., and Ristic, Z. (2004). Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. Eur. J. Biochem. 271, 3684-3692   DOI   ScienceOn
16 Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A. Carpentier, R., and Mohanty, P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541-550   DOI   ScienceOn
17 Chen, H., and Xiong, L. (2005). Pyridoxine is required for postembryonic root development and tolerance to osmotic and oxidative stresses. Plant J. 44, 396-408   DOI   ScienceOn
18 Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 103, 18822-18827   DOI   ScienceOn
19 Baek, D., Jin, Y., Jeong, J.C., Lee, H.J., Moon, H., Lee, J., Shin, D., Kang, C.H., Kim, D.H., Nam, J., et al. (2008). Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. Phytochemistry 69, 333-338   DOI   ScienceOn
20 Lim, C.J., Yang, K.A., Hong, J.K., Choi, J.S., Yun, D.J., Hong, J.C., Chung, W.S., Lee, S.Y., Cho, M.J., and Lim, C.O. (2006). Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J. Plant Res. 119, 373-383   DOI   ScienceOn
21 Moons, A. (2003). Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stressinduced and differentially salt stress-responsive in rice roots. FEBS Lett. 553, 427-432   DOI   ScienceOn
22 Denslow, S.A., Rueschhoff, E.E., and Daub, M.E. (2007). Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiol. Biochem. 45, 152-161   DOI   ScienceOn
23 Ristic, Z., Momcilović, I., Fu, J., Callegari, E., and DeRidder, B.P. (2007). Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. J. Plant Physiol. 164, 1564-1571   DOI   ScienceOn
24 Burke, J.J. (2001). Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plant. 112, 167-170   DOI   ScienceOn
25 Senthil-Kumar, M., Kumar, G., Srikanthbabu, V., and Udayakumar, M. (2007). Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J. Plant Physiol. 164, 111-125   DOI   ScienceOn
26 Blum, H., Beier, H., and Gross, H.J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99   DOI
27 Huang, B., and Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. J. Integr. Plant Biol. 50, 1230-1237   DOI   ScienceOn
28 Lee, D.G., Ahsan, N., Lee, S.H., Kang, K.Y., Bahk, J.D., Lee, I.J., and Lee, B.H. (2007a). A proteomic approach in analyzing heatresponsive proteins in rice leaves. Proteomics 7, 3369-3383   DOI   ScienceOn
29 Lim, C.J., Hwang, J.E., Chen, H., Hong, J.K., Yang, K.A., Choi, M.S., Lee, K.O., Chung, W.S., Lee, S.Y., and Lim, C.O. (2007). Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem. Biophys. Res. Commun. 362, 431-436   DOI   ScienceOn
30 Weijers, D., Franke-van Dijk, M., Vencken, R.J., Quint, A., Hooykaas, P., and Offringa, R. (2001). An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128, 4289-4299   PUBMED
31 Lee, K., Kye, M., Jang, J.S., Lee, O.J., Kim, T., and Lim, D. (2004). Proteomic analysis revealed a strong association of a high level of alpha1-antitrypsin in gastric juice with gastric cancer. Proteomics 4, 3343-3352   DOI   PUBMED   ScienceOn
32 Hong, B., Ma, C., Yang, Y., Wang, T., Yamaguchi-Shinozaki, K., and Gao, J. (2009). Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol. 70, 231-240   DOI   ScienceOn
33 Titiz, O., Tambasco-Studart, M., Warzych, E., Apel, K., Amrhein, N., Laloi, C., and Fitzpatrick, T.B. (2006). PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J. 48, 933-946   DOI   ScienceOn