• Title/Summary/Keyword: proteobacteria $\alpha$-

Search Result 102, Processing Time 0.036 seconds

Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles

  • Malathi, Vijayakumar M.;More, Ravi P.;Anandham, Rangasamy;Gracy, Gandhi R.;Mohan, Muthugounder;Venkatesan, Thiruvengadam;Samaddar, Sandipan;Jalali, Sushil Kumar;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.976-986
    • /
    • 2018
  • Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.

Effect of Soil Microbial Diversity in Paddy Wetland under Organic Rice-Fish Mixed Farming System (유기농 복합생태 논습지의 토양 미생물 다양성 증진 효과)

  • Han, Yangsoo;Park, Choongbae;Cho, Jung-Lai;Park, Sang-Gu;Kong, Min-Jae;Nam, Hong-Shik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • In this study, we investigated the bacterial community structure in organic rice-fish mixed farming paddy soil by using high-throughput sequencing technology. The results showed that compared with the organic rice cultivated soil, the content of AP (available phosphorus) increased by 310.23 % and the content of OM (organic matter) increased by 168.83%. The most abundant phyla in paddy soils were Proteobacteria, Bacteriodetes, and Chloroflexi, whose relative abundance was above 47.83%. Among the dominant genera, the relative abundance of Limisphaera in paddy soils was observed. Alpha diversity indicated that the bacterial diversity of paddy soils was similar among each other. The bacterial community structure was affected by the relative abundance of bacteria, not the species of bacteria. Principal Coordinated Analysis (PCoA) results showed that the bacterial communities in organic rice-fish mixed farming soil and organic paddy soil were correlated to each other; the bacterial community structure was distinctively grouped by four different systems (paddy soil under organic rice-fish mixed farming system, organic rice cultivation, and conventional rice cultivation), where the first two are closely related to each other than the third one. The results provide basal support for organic agri-cultivation while improving an ecological value at the same time.

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

Community Analysis of the Bacteria in Sponges of Lake Baikal by FISH Method (바이칼 호 Sponge에 서식하는 세균 군집 구조의 분석)

  • Seo, Eun-Young;Kim, Mi-Ree;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The bacterial community structures at 2 sponge species belonging to the genus Baikalospongia and Lubomirskia in Lake Baikal were analyzed with fluorescent in situ hybridization (FISH) method. The total bacterial numbers in the genus Baikalospongia ranged from $7.2{\times}10^{7}\;to\;4.2{\times}10^{8}\;cells/ml$, and those in Lubomirskia from $1.2{\times}10^{8}\;to\;1.6{\times}10^{8}\;cells/ml$, while those of lake water were from $2.3{\times}7.7{\times}10^{5}\;cells/ml$. Total bacterial numbers in the sponges were $10^{3}-10^{4}$ times higher than those of lake water. In the genera Baikalospongia and Lubomirskia, the proportions of other unidentified bacterial groups to the Bacteria were 42.0-60.3% and 40.7-51.9%, respectively. These proportions were similar to those in lake water (22.6-46.3%). These results suggest that bacterial compositions in Lake Baikal water and sponges are highly unique.

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.

Genomic DNA Extracted from Ancient Antarctic Glacier Ice for Molecular Analyses on the Indigenous Microbial Communities

  • Lee, Sang-Hoon;Bidle, Kay;Falkowski, Paul;Marchant, David
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.205-214
    • /
    • 2005
  • From ancient Antarctic glacier ice, we extracted total genomic DNA that was suitable for prokaryotic 16S rDNA gene cloning and sequencing, and bacterial artificial chromosome (BAC) library and end-sequencing. The ice samples were from the Dry Valley region. Age dating by $^{40}Ar/^{39}Ar$ analysis on the volcanic ashes deposited in situ indicated the ice samples are minimum 100,000-300,000 yr (sample DLE) and 8 million years (sample EME) old. Further assay proved the ice survived freeze-thaw cycles or other re-working processes. EME, which was from a small lobe of the basal Taylor glacier, is the oldest known ice on Earth. Microorganisms, preserved frozen in glacier ice and isolated from the rest of the world over a geological time scale, can provide valuable data or insight for the diversity, distribution, survival strategy, and evolutionary relationships to the extant relatives. From the 16S gene cloning study, we detected no PCR amplicons with Archaea-specific primers, however we found many phylotypes belonging to Bacteria divisions, such as Actinobacteria, Acidobacteria, Proteobacteria $({\alpha},\;{\beta},\;and\;{\gamma})$, Firmicutes, and Cytophaga-Flavobacterium-Bacteroid$. BAC cloning and sequencing revealed protein codings highly identical to phenylacetic acid degradation protein paaA, chromosome segregation ATPases, or cold shock protein B of present day bacteria. Throughput sequencing of the BAC clones is underway. Viable and culturable cells were recovered from the DLE sample, and characterized by their 16S rDNA sequences. Further investigation on the survivorship and functional genes from the past should help unveil the evolution of life on Earth, or elsewhere, if any.

Supragingival Plaque Microbial Community Analysis of Children with Halitosis

  • Ren, Wen;Zhang, Qun;Liu, Xuenan;Zheng, Shuguo;Ma, Lili;Chen, Feng;Xu, Tao;Xu, Baohua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2141-2147
    • /
    • 2016
  • As one of the most complex human-associated microbial habitats, the oral cavity harbors hundreds of bacteria. Halitosis is a prevalent oral condition that is typically caused by bacteria. The aim of this study was to analyze the microbial communities and predict functional profiles in supragingival plaque from healthy individuals and those with halitosis. Ten preschool children were enrolled in this study; five with halitosis and five without. Supragingival plaque was isolated from each participant and 16S rRNA gene pyrosequencing was used to identify the microbes present. Samples were primarily composed of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Candidate phylum TM7. The ${\alpha}$ and ${\beta}$ diversity indices did not differ between healthy and halitosis subjects. Fifteen operational taxonomic units (OTUs) were identified with significantly different relative abundances between healthy and halitosis plaques, and included the phylotypes of Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, and Capnocytophaga ochracea. We suggest that these OTUs are candidate halitosis-associated pathogens. Functional profiles were predicted using PICRUSt, and nine level-3 KEGG Orthology groups were significantly different. Hub modules of co-occurrence networks implied that microbes in halitosis dental plaque were more highly conserved than microbes of healthy individuals' plaque. Collectively, our data provide a background for the oral microbiota associated with halitosis from supragingival plaque, and help explain the etiology of halitosis.

Endosymbionts of Acanthamoeba Isolated from Domestic Tap Water in Korea

  • Choi, Seon-Hee;Cho, Min-Kyoung;Ahn, Soon-Cheol;Lee, Ji-Eun;Lee, Jong-Soo;Kim, Dong-Hee;Xuan, Ying-Hua;Hong, Yeon-Chul;Kong, Hyun-Hee;Chung, Dong-Il;Yu, Hak-Sun
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.4
    • /
    • pp.337-344
    • /
    • 2009
  • In a previous study, we reported our discovery of Acanthamoeba contamination in domestic tap water; in that study, we determined that some Acanthamoeba strains harbor endosymbiotic bacteria, via our molecular characterization by mitochondrial DNA restriction fragment length polymorphism (Mt DNA RFLP). Five (29.4%) among 17 Acanthamoeba isolates contained endosymbionts in their cytoplasm, as demonstrated via orcein staining. In order to estimate their pathogenicity, we conducted a genetic characterization of the endosymbionts in Acanthamoeba isolated from domestic tap water via 16S rDNA sequencing. The endosymbionts of Acanthamoeba sp. KA/WP3 and KA/WP4 evidenced the highest level of similarity, at 97% of the recently published 16S rDNA sequence of the bacterium, Candidatus Amoebophilus asiaticus. The endosymbionts of Acanthamoeba sp. KA/WP8 and KA/WP12 shared a 97% sequence similarity with each other, and were also highly similar to Candidatus Odyssella thessalonicensis, a member of the $\alpha$-proteobacteria. The endosymbiont of Acanthamoeba sp. KA/WP9 exhibits a high degree of similarity (85-95%) with genus Methylophilus, which is not yet known to harbor any endosymbionts. This is the first report, to the best of our knowledge, to show that Methylophilus spp. can live in the cytoplasm of Acanthamoeba.

Taxonomic Characteristics of Nitrogen-Fixing Oligotrophic Bacteria from Forest Soil (산림토양으로부터 분리한 저영양성-질소고정세균의 분류학적 특성)

  • 황경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • Many isolates from different forest soil layers did not show appreciable growth on full strength of the conventional nutrient broth (NB medium) but grow on its 100-fold dilution (DNB medium). These isolates were divided into four types according to organic nutrient concentration in the growth medium from $1^{-1}\;to\;10^{-4}$dilution of normal NB medium. Oligotrophic bacteria were type II and type IV which grew in $10^{-4}$ dilution of NB (1 mg C/l) medium. Sixty strains were isolated for obligate oligotrophic bacteria. Chemotaxonomic and phylogenetic characteristics of eleven isolates of acetylene-reducing (nitrogen-fixing) oligotrophic bacteria from forest soil were investigated. They showed similar characteristics: the cellular fatty acid mainly consisted of straight-chain unsaturated $C_{18:1}$ (60-84% of total fatty acids). Ubiquinone Q-10 and a high guanine plus-cytosine content(61-64 mol%) were found. Eleven isolates of nitrogen-fixing oligotrophic bacteria were found to be closely related by full 16S rDNA sequence simility and many common taxonomic traits. Analysis of full 16S rDNA sequences of eleven isolates indicated that they were more closely related to Bradyrhizobium (similarity values: 98.1-98.8%), Agromonas, Nitrobacter, and Afipia.

  • PDF