• 제목/요약/키워드: protein-protein network

검색결과 606건 처리시간 0.018초

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

Adiponectin에 의한 IL-2 증가 자연살해세포 독성의 조절 (IL-2-enhanced NK Cell Cytotoxicity is Regulated by Adiponectin from Hypothalamo-pituitary-adrenal Axis)

  • 김근영;양영
    • IMMUNE NETWORK
    • /
    • 제6권1호
    • /
    • pp.6-12
    • /
    • 2006
  • Background: The Hypothalamo-Pituitary-Adrenal (HPA) axis is an important regulator for the body's stress response. As a primary stress responsive system, HPA-axis secretes various neurotransmitters, hormones, and cytokines, which regulates the immune system. Natural killer (NK) cell which is plays an important role in the innate immune response, is specially decreased their numbers and loose cytolytic activity in response to stress. However, the effect of HPA-axis secreted proteins on NK cell activity has not been defined. Herein, we studied the effect of adrenal secreted adiponectin on NK cell cytotoxicity. Adiponectin which is well-known metabolic control protein, plays important roles in various diseases, including hypertension, cardiovascular diseases, inflammatory disorders, and cancer. Methods: Signal sequence trap was used to find stress novel secretory protein from HP A-axis. Selected adiponectin was treated mouse mature primary NK cells and then examined the effect of adiponectin to NK cell cytotoxicity and cytokine expression level. Results: We found that adiponectin which is secreted from adrenal gland, suppress IL-2 induced NK cell cytotoxicity. And also investigated cytolytic cytokines are suppressed by adiponectin. Conclusion: These data suggest that adiponectin inhibites NK cell cytotoxicity via suppression of cytotoxicity related target gene.

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

Sepsis Mortality in CIITA Deficient Mice is Associated with Excessive Release of High-mobility Group Box 1

  • Kim, Ji-Young;Kim, Ju-Hyun;Seo, Jae-Nam;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2008
  • Background: Down regulation of major histocompatibility complex class II transactivator (CIITA) has been identified as a major factor of immunosuppression in sepsis and the level of CIITA expression inversely correlates with the degree of severity. However, it has not been fully elucidated whether the lower expression of CIITA is a cause of disease process or a just associated sign. Here we determined whether the CIITA deficiency decreased survival rate using murine sepsis model. Methods: Major histocompatibility complex class II (MHC-II) deficient, CIITA deficient and wild type B6 mice were subjected to cecal ligation puncture (CLP) surgery. CIITA and recombination activation gene (RAG)-1 double deficient mice were generated to test the role of lymphocytes in CIITA-associated sepsis progression. Results: Sepsis mortality was enhanced in CIITA deficient mice, not by impaired bacterial clearance resulted from CD4 T cell depletion, but hyper-inflammatory response such as excessive release of a pro-inflammatory cytokine, high-mobility group box 1 (HMGB1). Conclusion: Our results demonstrate that CIITA deficiency affects the course of sepsis via the unexpected function of CIITA, regulation of cytokine release.

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • Krishnan, Jayalakshmi;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.153-166
    • /
    • 2012
  • A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

  • Jha, Mithilesh Kumar;Jeon, Sangmin;Jin, Myungwon;Lee, Won-Ha;Suk, Kyoungho
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.289-294
    • /
    • 2013
  • Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.

Regulatory Network of ARF in Cancer Development

  • Ko, Aram;Han, Su Yeon;Song, Jaewhan
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.381-389
    • /
    • 2018
  • ARF is a tumor suppressor protein that has a pivotal role in the prevention of cancer development through regulating cell proliferation, senescence, and apoptosis. As a factor that induces senescence, the role of ARF as a tumor suppressor is closely linked to the p53-MDM2 axis, which is a key process that restrains tumor formation. Thus, many cancer cells either lack a functional ARF or p53, which enables them to evade cell oncogenic stress-mediated cycle arrest, senescence, or apoptosis. In particular, the ARF gene is a frequent target of genetic and epigenetic alterations including promoter hyper-methylation or gene deletion. However, as many cancer cells still express ARF, pathways that negatively modulate transcriptional or post-translational regulation of ARF could be potentially important means for cancer cells to induce cellular proliferation. These recent findings of regulators affecting ARF protein stability along with its low levels in numerous human cancers indicate the significance of an ARF post-translational mechanism in cancers. Novel findings of regulators stimulating or suppressing ARF function would provide new therapeutic targets to manage cancer- and senescence-related diseases. In this review, we present the current knowledge on the regulation and alterations of ARF expression in human cancers, and indicate the importance of regulators of ARF as a prognostic marker and in potential therapeutic strategies.

Constructing Proteome Reference Map of the Porcine Jejunal Cell Line (IPEC-J2) by Label-Free Mass Spectrometry

  • Kim, Sang Hoon;Pajarillo, Edward Alain B.;Balolong, Marilen P.;Lee, Ji Yoon;Kang, Dae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1124-1131
    • /
    • 2016
  • In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications.

Low Levels of Polymorphisms and Negative Selection in Plasmodum knowlesi Merozoite Surface Protein 8 in Malaysian Isolates

  • Ahmed, Md Atique;Kang, Hae-Ji;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • 제57권4호
    • /
    • pp.445-450
    • /
    • 2019
  • Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.

Modulation of Kex2p Cleavage Site for In Vitro Processing of Recombinant Proteins Produced by Saccharomyces cerevisiae

  • Mi-Jin Kim;Se-Lin Park;Seung Hwa Kim;Hyun-Joo Park;Bong Hyun Sung;Jung-Hoon Sohn;Jung-Hoon Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1513-1520
    • /
    • 2023
  • Kex2 protease (Kex2p) is a membrane-bound serine protease responsible for the proteolytic maturation of various secretory proteins by cleaving after dibasic residues in the late Golgi network. In this study, we present an application of Kex2p as an alternative endoprotease for the in vitro processing of recombinant fusion proteins produced by the yeast Saccharomyces cerevisiae. The proteins were expressed with a fusion partner connected by a Kex2p cleavage sequence for enhanced expression and easy purification. To avoid in vivo processing of fusion proteins by Kex2p during secretion and to guarantee efficient removal of the fusion partners by in vitro Kex2p processing, P1', P2', P4, and P3 sites of Kex2p cleavage sites were elaborately manipulated. The general use of Kex2p in recombinant protein production was confirmed using several recombinant proteins.