DOI QR코드

DOI QR Code

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • 투고 : 2012.05.25
  • 심사 : 2012.07.20
  • 발행 : 2012.09.30

초록

A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

키워드

참고문헌

  1. Krishnan J, Selvarajoo K, Tsuchiya M, Lee G, Choi S. Toll-like receptor signal transduction. Exp Mol Med 2007;39:421-438. https://doi.org/10.1038/emm.2007.47
  2. Basith S, Manavalan B, Lee G, Kim SG, Choi S. Toll-like receptor modulators: a patent review (2006-2010). Expert Opin Ther Pat 2011;21:927-944. https://doi.org/10.1517/13543776.2011.569494
  3. Raetz CR, Garrett TA, Reynolds CM, Shaw WA, Moore JD, Smith DC Jr, et al. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. J Lipid Res 2006;47:1097-1111. https://doi.org/10.1194/jlr.M600027-JLR200
  4. Kim EY, Shin HY, Kim JY, Kim DG, Choi YM, Kwon HK, et al. ATF3 plays a key role in Kdo2-lipid A-induced TLR4-dependent gene expression via NF-kappaB activation. PLoS One 2010;5:e14181. https://doi.org/10.1371/journal.pone.0014181
  5. Dunne A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003;2003:re3.
  6. Cheng JT, Hsien C, Sun HE, Tong MJ. The emerging importance of chronic hepatitis C infection in Asian Americans. Am J Gastroenterol 2006;101:2737-2743. https://doi.org/10.1111/j.1572-0241.2006.00831.x
  7. Du K, Montminy M. CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998;273:32377-32379. https://doi.org/10.1074/jbc.273.49.32377
  8. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 1996;15: 4629-4642.
  9. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996;273:959-963. https://doi.org/10.1126/science.273.5277.959
  10. Yamamoto KK, Gonzalez GA, Biggs WH 3rd, Montminy MR. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 1988;334:494-498. https://doi.org/10.1038/334494a0
  11. Zhu X, Chang MS, Hsueh RC, Taussig R, Smith KD, Simon MI, et al. Dual ligand stimulation of RAW 264.7 cells uncovers feedback mechanisms that regulate TLR-mediated gene expression. J Immunol 2006;177:4299-4310. https://doi.org/10.4049/jimmunol.177.7.4299
  12. Park PJ, Cao YA, Lee SY, Kim JW, Chang MS, Hart R, et al. Current issues for DNA microarrays: platform comparison, double linear amplification, and universal RNA reference. J Biotechnol 2004;112:225-245. https://doi.org/10.1016/j.jbiotec.2004.05.006
  13. Zhu X, Hart R, Chang MS, Kim JW, Lee SY, Cao YA, et al. Analysis of the major patterns of B cell gene expression changes in response to short-term stimulation with 33 single ligands. J Immunol 2004;173:7141-7149. https://doi.org/10.4049/jimmunol.173.12.7141
  14. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001;125:279-284. https://doi.org/10.1016/S0166-4328(01)00297-2
  15. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998;95:14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  16. Soukas A, Cohen P, Socci ND, Friedman JM. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 2000;14:963-980.
  17. Krishnan J, Lee G, Choi S. Drugs targeting Toll-like receptors. Arch Pharm Res 2009;32:1485-1502. https://doi.org/10.1007/s12272-009-2100-6
  18. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 1997;8:293-312. https://doi.org/10.1016/S1359-6101(97)00019-1
  19. Jefferies CA, Fitzgerald KA. Interferon gene regulation: not all roads lead to Tolls. Trends Mol Med 2005;11:403-411. https://doi.org/10.1016/j.molmed.2005.07.006
  20. Chiariello M, Marinissen MJ, Gutkind JS. Multiple mitogen- activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol 2000;20:1747-1758. https://doi.org/10.1128/MCB.20.5.1747-1758.2000
  21. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000;103:1071-1083. https://doi.org/10.1016/S0092-8674(00)00210-5
  22. Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J 1996; 15:817-826.
  23. Tsatsanis C, Patriotis C, Bear SE, Tsichlis PN. The Tpl-2 protooncoprotein activates the nuclear factor of activated T cells and induces interleukin 2 expression in T cell lines. Proc Natl Acad Sci U S A 1998;95:3827-3832. https://doi.org/10.1073/pnas.95.7.3827
  24. Marampon F, Ciccarelli C, Zani BM. Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle- derived human tumors. Mol Cancer 2006;5:31. https://doi.org/10.1186/1476-4598-5-31
  25. Hildesheim J, Fornace AJ Jr. Gadd45a: an elusive yet attractive candidate gene in pancreatic cancer. Clin Cancer Res 2002;8: 2475-2479.
  26. Zidek Z. Adenosine-cyclic AMP pathways and cytokine expression. Eur Cytokine Netw 1999;10:319-328.
  27. Parry GC, Mackman N. Role of cyclic AMP response element- binding protein in cyclic AMP inhibition of NFkappaB- mediated transcription. J Immunol 1997;159:5450-5456.
  28. Houslay MD, Kolch W. Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol 2000;58:659-668. https://doi.org/10.1124/mol.58.4.659
  29. Yoshimura A, Mori H, Ohishi M, Aki D, Hanada T. Negative regulation of cytokine signaling influences inflammation. Curr Opin Immunol 2003;15:704-708. https://doi.org/10.1016/j.coi.2003.09.004
  30. Kinjyo I, Hanada T, Inagaki-Ohara K, Mori H, Aki D, Ohishi M, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002;17:583-591. https://doi.org/10.1016/S1074-7613(02)00446-6
  31. Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor- mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 2005;6: 777-784.
  32. Saegusa K, Yotsumoto S, Kato S, Aramaki Y. Phosphatidylinositol 3-kinase-mediated regulation of IL-10 and IL-12 production in macrophages stimulated with CpG oligodeoxynucleotide. Mol Immunol 2007;44:1323-1330. https://doi.org/10.1016/j.molimm.2006.05.008
  33. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci U S A 2005;102:15989-15994. https://doi.org/10.1073/pnas.0508327102
  34. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN, et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 2002;76:5532-5539. https://doi.org/10.1128/JVI.76.11.5532-5539.2002
  35. Wen Z, Zhong Z, Darnell JE Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995;82:241-250. https://doi.org/10.1016/0092-8674(95)90311-9
  36. Zhu X, Wen Z, Xu LZ, Darnell JE Jr. Stat1 serine phosphorylation occurs independently of tyrosine phosphorylation and requires an activated Jak2 kinase. Mol Cell Biol 1997;17:6618-6623. https://doi.org/10.1128/MCB.17.11.6618
  37. Jacobs AT, Ignarro LJ. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J Biol Chem 2001;276:47950-47957. https://doi.org/10.1074/jbc.M106639200
  38. Sheth SB, Chaganti K, Bastepe M, Ajuria J, Brennan K, Biradavolu R, et al. Cyclic AMP phosphodiesterases in human lymphocytes. Br J Haematol 1997;99:784-789. https://doi.org/10.1046/j.1365-2141.1997.4803282.x
  39. Jin SL, Conti M. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci U S A 2002;99:7628-7633. https://doi.org/10.1073/pnas.122041599
  40. Ferrier AF, Lee M, Anderson WB, Benvenuto G, Morrison DK, Lowy DR, et al. Sequential modification of serines 621 and 624 in the Raf-1 carboxyl terminus produces alterations in its electrophoretic mobility. J Biol Chem 1997;272:2136-2142. https://doi.org/10.1074/jbc.272.4.2136
  41. Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, et al. Negative regulation of Raf-1 by phosphorylation of serine621. Mol Cell Biol 1996;16:5409-5418. https://doi.org/10.1128/MCB.16.10.5409
  42. Graves LM, Bornfeldt KE, Raines EW, Potts BC, Macdonald SG, Ross R, et al. Protein kinase A antagonizes platelet- derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A 1993;90:10300-10304. https://doi.org/10.1073/pnas.90.21.10300
  43. Burgering BM, Pronk GJ, van Weeren PC, Chardin P, Bos JL. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J 1993;12:4211-4220.
  44. Cook SJ, McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science 1993;262:1069-1072. https://doi.org/10.1126/science.7694367
  45. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 2004;430:218-222. https://doi.org/10.1038/nature02738
  46. Samuel JM, Kelberman D, Smith AJ, Humphries SE, Woo P. Identification of a novel regulatory region in the interleukin-6 gene promoter. Cytokine 2008;42:256-264. https://doi.org/10.1016/j.cyto.2008.02.008
  47. Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 2001;273: 1-11. https://doi.org/10.1016/S0378-1119(01)00551-0
  48. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006;441:173-178. https://doi.org/10.1038/nature04768
  49. Schreiber J, Jenner RG, Murray HL, Gerber GK, Gifford DK, Young RA. Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci U S A 2006;103:5899-5904. https://doi.org/10.1073/pnas.0510996103
  50. Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol 2007;8:1. https://doi.org/10.1186/1471-2172-8-1
  51. Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 2000;12:174-179. https://doi.org/10.1016/S0955-0674(99)00073-3
  52. Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003;278:5493-5496. https://doi.org/10.1074/jbc.R200029200
  53. Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370(Pt 1):1-18. https://doi.org/10.1042/BJ20021698
  54. Jin SL, Lan L, Zoudilova M, Conti M. Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. J Immunol 2005;175:1523-1531. https://doi.org/10.4049/jimmunol.175.3.1523
  55. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 1997;89:413-424. https://doi.org/10.1016/S0092-8674(00)80222-6
  56. Hasko G, Nemeth ZH, Szabo C, Zsilla G, Salzman AL, Vizi ES. Isoproterenol inhibits Il-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages. Brain Res Bull 1998;45: 183-187. https://doi.org/10.1016/S0361-9230(97)00337-7
  57. Vassiliou E, Jing H, Ganea D. Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell Immunol 2003;223:120-132. https://doi.org/10.1016/S0008-8749(03)00158-8
  58. Delgado M, Leceta J, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 2003;73:155-164. https://doi.org/10.1189/jlb.0702372
  59. Leceta J, Gomariz RP, Martinez C, Abad C, Ganea D, Delgado M. Receptors and transcriptional factors involved in the anti- inflammatory activity of VIP and PACAP. Ann N Y Acad Sci 2000;921:92-102.
  60. Takahashi N, Tetsuka T, Uranishi H, Okamoto T. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 2002;269:4559-4565. https://doi.org/10.1046/j.1432-1033.2002.03157.x
  61. Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 2005;17:1343-1351. https://doi.org/10.1016/j.cellsig.2005.02.003
  62. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A 1989;86:2336-2340. https://doi.org/10.1073/pnas.86.7.2336
  63. Hiscott J, Marois J, Garoufalis J, D'Addario M, Roulston A, Kwan I, et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 1993;13:6231-6240. https://doi.org/10.1128/MCB.13.10.6231
  64. Carter DB, Deibel MR Jr, Dunn CJ, Tomich CS, Laborde AL, Slightom JL, et al. Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 1990;344:633-638. https://doi.org/10.1038/344633a0
  65. Felgner J, Heidorn K, Körbächer D, Frahm SO, Parwaresch R. Cell lineage specificity in G-CSF receptor gene methylation. Leukemia 1999;13:530-534. https://doi.org/10.1038/sj.leu.2401386
  66. Ravasi T, Wells C, Forest A, Underhill DM, Wainwright BJ, Aderem A, et al. Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immunol 2002;168:44-50. https://doi.org/10.4049/jimmunol.168.1.44
  67. Saccani S, Pantano S, Natoli G. Two waves of nuclear factor kappaB recruitment to target promoters. J Exp Med 2001;193: 1351-1359. https://doi.org/10.1084/jem.193.12.1351

피인용 문헌

  1. A Systems Biological Approach Reveals Multiple Crosstalk Mechanism between Gram-Positive and Negative Bacterial Infections: An Insight into Core Mechanism and Unique Molecular Signatures vol.9, pp.2, 2014, https://doi.org/10.1371/journal.pone.0089993