DOI QR코드

DOI QR Code

Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

  • Jha, Mithilesh Kumar (Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine) ;
  • Jeon, Sangmin (Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine) ;
  • Jin, Myungwon (Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine) ;
  • Lee, Won-Ha (School of Life Sciences and Biotechnology, Kyungpook National University) ;
  • Suk, Kyoungho (Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine)
  • Received : 2013.11.20
  • Accepted : 2013.12.09
  • Published : 2013.12.31

Abstract

Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.

Keywords

References

  1. Nathan, C. 2002. Points of control in inflammation. Nature 420: 846-852. https://doi.org/10.1038/nature01320
  2. Jha, M. K., S. Jeon, and K. Suk. 2012. Glia as a Link between Neuroinflammation and Neuropathic Pain. Immune Netw. 12: 41-47. https://doi.org/10.4110/in.2012.12.2.41
  3. Lyman, M., D. G. Lloyd, X. Ji, M. P. Vizcaychipi, and D. Ma. 2013. Neuroinflammation: The role and consequences. Neurosci. Res. In press: http://doi.org/10.1016/j.neures. 2013.10.004.
  4. Campbell, J. N. and R. A. Meyer. 2006. Mechanisms of neuropathic pain. Neuron 52: 77-92. https://doi.org/10.1016/j.neuron.2006.09.021
  5. Scholz, J. and C. J. Woolf. 2007. The neuropathic pain triad: neurons, immune cells and glia. Nat. Neurosci. 10: 1361-1368. https://doi.org/10.1038/nn1992
  6. Watkins, L. R., E. D. Milligan, and S. F. Maier. 2001. Glial activation: a driving force for pathological pain. Trends Neurosci. 24: 450-455. https://doi.org/10.1016/S0166-2236(00)01854-3
  7. Jeon, S., M. K. Jha, J. Ock, J. Seo, M. Jin, H. Cho, W. H. Lee, and K. Suk. 2013. Role of lipocalin-2-chemokine axis in the development of neuropathic pain following peripheral nerve injury. J. Biol. Chem. 288: 24116-24127. https://doi.org/10.1074/jbc.M113.454140
  8. Ji, R. R., T. Berta, and M. Nedergaard. 2013. Glia and pain: Is chronic pain a gliopathy? Pain In press: http://dx.doi. org/10.1016/j.pain.2013.06.022.
  9. Milligan, E. D. and L. R. Watkins. 2009. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10: 23-36. https://doi.org/10.1038/nrn2533
  10. Inoue, K. and M. Tsuda. 2009. Microglia and neuropathic pain. Glia 57: 1469-1479. https://doi.org/10.1002/glia.20871
  11. Gao, Y. J. and R. R. Ji. 2010. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol. Ther. 126: 56-68. https://doi.org/10.1016/j.pharmthera.2010.01.002
  12. Raghavendra, V., F. Tanga, M. D. Rutkowski, and J. A. DeLeo. 2003. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain 104: 655-664. https://doi.org/10.1016/S0304-3959(03)00138-6
  13. Woolf, C. J. 2011. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152: S2-15.
  14. Cowland, J. B. and N. Borregaard. 1997. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45: 17-23. https://doi.org/10.1006/geno.1997.4896
  15. Hraba-Renevey, S., H. Turler, M. Kress, C. Salomon, and R. Weil. 1989. SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene 4: 601-608.
  16. Flower, D. R. 1996. The lipocalin protein family: structure and function. Biochem. J. 318(Pt 1): 1-14.
  17. Nilsen-Hamilton, M., Q. Liu, J. Ryon, L. Bendickson, P. Lepont, and Q. Chang. 2003. Tissue involution and the acute phase response. Ann. N. Y. Acad. Sci. 995: 94-108. https://doi.org/10.1111/j.1749-6632.2003.tb03213.x
  18. Poh, K. W., J. F. Yeo, C. S. Stohler, and W. Y. Ong. 2012. Comprehensive gene expression profiling in the prefrontal cortex links immune activation and neutrophil infiltration to antinociception. J. Neurosci. 32: 35-45. https://doi.org/10.1523/JNEUROSCI.2389-11.2012
  19. Mucha, M., A. E. Skrzypiec, E. Schiavon, B. K. Attwood, E. Kucerova, and R. Pawlak. 2011. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl. Acad. Sci. U. S. A. 108: 18436-18441. https://doi.org/10.1073/pnas.1107936108
  20. Lee, S., J. Lee, S. Kim, J. Y. Park, W. H. Lee, K. Mori, S. H. Kim, I. K. Kim, and K. Suk. 2007. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J. Immunol. 179: 3231-3241. https://doi.org/10.4049/jimmunol.179.5.3231
  21. Lee, S., J. Y. Park, W. H. Lee, H. Kim, H. C. Park, K. Mori, and K. Suk. 2009. Lipocalin-2 is an autocrine mediator of reactive astrocytosis. J. Neurosci. 29: 234-249. https://doi.org/10.1523/JNEUROSCI.5273-08.2009
  22. Lee, S., W. H. Lee, M. S. Lee, K. Mori, and K. Suk. 2012. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology. J. Neurosci. Res. 90: 540-550. https://doi.org/10.1002/jnr.22779
  23. Lee, S., J. H. Kim, J. W. Seo, H. S. Han, W. H. Lee, K. Mori, K. Nakao, J. Barasch, and K. Suk. 2011. Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J. Biol. Chem. 286: 43855-43870. https://doi.org/10.1074/jbc.M111.299248
  24. Flo, T. H., K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes, R. K. Strong, S. Akira, and A. Aderem. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432: 917-921. https://doi.org/10.1038/nature03104
  25. Nairz, M., I. Theurl, A. Schroll, M. Theurl, G. Fritsche, E. Lindner, M. Seifert, M. L. Crouch, K. Hantke, S. Akira, F. C. Fang, and G. Weiss. 2009. Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114: 3642-3651. https://doi.org/10.1182/blood-2009-05-223354
  26. Hylden, J. L. and G. L. Wilcox. 1980. Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol. 67: 313-316. https://doi.org/10.1016/0014-2999(80)90515-4
  27. Decosterd, I. and C. J. Woolf. 2000. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87: 149-158. https://doi.org/10.1016/S0304-3959(00)00276-1
  28. Tegeder, I., M. Costigan, R. S. Griffin, A. Abele, I. Belfer, H. Schmidt, C. Ehnert, J. Nejim, C. Marian, J. Scholz, T. Wu, A. Allchorne, L. Diatchenko, A. M. Binshtok, D. Goldman, J. Adolph, S. Sama, S. J. Atlas, W. A. Carlezon, A. Parsegian, J. Lotsch, R. B. Fillingim, W. Maixner, G. Geisslinger, M. B. Max, and C. J. Woolf. 2006. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12: 1269-1277. https://doi.org/10.1038/nm1490
  29. Chaplan, S. R., F. W. Bach, J. W. Pogrel, J. M. Chung, and T. L. Yaksh. 1994. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53: 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
  30. Dixon, W. J. 1980. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. Toxicol. 20: 441-462. https://doi.org/10.1146/annurev.pa.20.040180.002301
  31. Hunskaar, S. and K. Hole. 1987. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30: 103-114. https://doi.org/10.1016/0304-3959(87)90088-1
  32. Latremoliere, A. and C. J. Woolf. 2009. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10: 895-926. https://doi.org/10.1016/j.jpain.2009.06.012
  33. Woolf, C. J. and M. W. Salter. 2000. Neuronal plasticity: increasing the gain in pain. Science 288: 1765-1769. https://doi.org/10.1126/science.288.5472.1765
  34. Austin, P. J. and G. Moalem-Taylor. 2010. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 229: 26-50. https://doi.org/10.1016/j.jneuroim.2010.08.013
  35. Hashioka, S., T. Miyaoka, R. Wake, M. Furuya, and J. Horiguchi. 2013. Glia: an important target for anti-inflammatory and antidepressant activity. Curr. Drug Targets 14: 1322-1328. https://doi.org/10.2174/13894501113146660214
  36. Skaper, S. D., P. Giusti, and L. Facci. 2012. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 26: 3103-3117. https://doi.org/10.1096/fj.11-197194
  37. Vega-Avelaira, D., J. J. Ballesteros, and J. A. Lopez-Garcia. 2013. Inflammation-induced hyperalgesia and spinal microglia reactivity in neonatal rats. Eur. J. Pain. 17: 1180-1188. https://doi.org/10.1002/j.1532-2149.2013.00308.x
  38. Nowak, L., D. Zurowski, J. Dobrogowski, J. Wordliczek, and P. J. Thor. 2012. Pentoxifylline modifies central and peripheral vagal mechanism in acute and chronic pain models. Folia Med. Cracov. 52: 83-95.

Cited by

  1. Expression of neutrophil gelatinase-associated lipocalin (NGAL) in peripheral nerve repair vol.36, pp.4, 2013, https://doi.org/10.3109/10799893.2015.1132238
  2. Quercetin attenuates AZT-induced neuroinflammation in the CNS vol.8, pp.None, 2013, https://doi.org/10.1038/s41598-018-24618-2
  3. Lipocalin-2 in Diabetic Complications of the Nervous System: Physiology, Pathology, and Beyond vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.638112
  4. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases vol.70, pp.None, 2013, https://doi.org/10.1016/j.arr.2021.101414