DOI QR코드

DOI QR Code

Low Levels of Polymorphisms and Negative Selection in Plasmodum knowlesi Merozoite Surface Protein 8 in Malaysian Isolates

  • Ahmed, Md Atique (Department of Medical Zoology, School of Medicine, Kyung Hee University) ;
  • Kang, Hae-Ji (Department of Biomedical Science, Graduate School, Kyung Hee University) ;
  • Quan, Fu-Shi (Department of Medical Zoology, School of Medicine, Kyung Hee University)
  • Received : 2019.02.17
  • Accepted : 2019.07.17
  • Published : 2019.08.31

Abstract

Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.

Keywords

References

  1. Ahmed MA, Cox-Singh J. Plasmodium knowlesi - an emerging pathogen. ISBT Sci Ser 2015; 10: 134-140. https://doi.org/10.1111/voxs.12115
  2. Amir A, Cheong FW, de Silva JR, Liew JWK, Lau YL. Plasmodium knowlesi malaria: current research perspectives. Infect Drug Resist 2018; 11: 1145-1155. https://doi.org/10.2147/IDR.S148664
  3. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, Thomas A, Conway DJ. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 2004; 363: 1017-1024. https://doi.org/10.1016/S0140-6736(04)15836-4
  4. Barber BE, William T, Grigg MJ, Menon J, Auburn S, Marfurt J, Anstey NM, Yeo TW. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis 2013; 56: 383-397. https://doi.org/10.1093/cid/cis902
  5. Barber BE, William T, Jikal M, Jilip J, Dhararaj P, Menon J, Yeo TW, Anstey NM: Plasmodium knowlesi malaria in children. Emerg Infect Dis 2011; 17: 814-820. https://doi.org/10.3201/eid1705.101489
  6. Yusof R, Lau YL, Mahmud R, Fong MY, Jelip J, Ngian HU, Mustakim S, Hussin HM, Marzuki N, Mohd Ali M. High proportion of knowlesi malaria in recent malaria cases in Malaysia. Malar J 2014; 13: 168. https://doi.org/10.1186/1475-2875-13-168
  7. William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, Khoo S, Frederick C, Jelip J, Anstey NM, Yeo TW. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg Infect Dis 2011; 17: 1248-1255. https://doi.org/10.3201/eid1707.101017
  8. Willmann M, Ahmed A, Siner A, Wong IT, Woon LC, Singh B, Krishna S, Cox-Singh J. Laboratory markers of disease severity in Plasmodium knowlesi infection: a case control study. Malar J 2012; 11: 363. https://doi.org/10.1186/1475-2875-11-363
  9. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, Singh B. Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 2009; 49: 852-860. https://doi.org/10.1086/605439
  10. Pinheiro MM, Ahmed MA, Millar SB, Sanderson T, Otto TD, Lu WC, Krishna S, Rayner JC, Cox-Singh J. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism. PLoS One 2015; 10: e0121303. https://doi.org/10.1371/journal.pone.0121303
  11. Assefa S, Lim C, Preston MD, Duffy CW, Nair MB, Adroub SA, Kadir KA, Goldberg JM, Neafsey DE, Divis P, Clark TG, Duraisingh MT, Conway DJ, Pain A, Singh B. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc Natl Acad Sci USA 2015; 112: 13027-13032. https://doi.org/10.1073/pnas.1509534112
  12. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, Fong MY, Mahmud R, Sitam FA, Japning JR, Snounou G, Escalante AA, Lau YL. Phylogeographic evidence for 2 genetically distinct zoonotic Plasmodium knowlesi parasites, Malaysia. Emerg Infect Dis 2016; 22: 1371-1380. https://doi.org/10.3201/eid2208.151885
  13. Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traore K, Niangaly A, Djimde AA, Doumbo OK, Plowe CV. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 2009; 1: 2ra5. https://doi.org/10.1126/scitranslmed.3000257
  14. Cheng Y, Shin EH, Lu F, Wang B, Choe J, Tsuboi T, Han ET. Antigenicity studies in humans and immunogenicity studies in mice: an MSP1P subdomain as a candidate for malaria vaccine development. Microbes Infect 2014; 16: 419-428. https://doi.org/10.1016/j.micinf.2014.02.002
  15. Valderrama-Aguirre A, Quintero G, Gomez A, Castellanos A, Perez Y, Mendez F, Arevalo-Herrera M, Herrera S. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. Am J Trop Med Hyg 2005; 73: 16-24. https://doi.org/10.4269/ajtmh.2005.73.16
  16. O'Donnell RA, Saul A, Cowman AF, Crabb BS: Functional conservation of the malaria vaccine antigen MSP-119across distantly related Plasmodium species. Nat Med 2000; 6: 91-95. https://doi.org/10.1038/71595
  17. Ahmed MA, Quan FS. Plasmodium knowlesi clinical isolates from Malaysia show extensive diversity and strong differential selection pressure at the merozoite surface protein 7D (MSP7D). Malar J 2019: 18: 150. https://doi.org/10.1186/s12936-019-2782-2
  18. Ahmed MA, Fong MY, Lau YL, Yusof R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar J 2016; 15: 241. https://doi.org/10.1186/s12936-016-1294-6
  19. Ahmed AM, Pinheiro MM, Divis PC, Siner A, Zainudin R, Wong IT, Lu CW, Singh-Khaira SK, Millar SB, Lynch S, Willmann M, Singh B, Krishna S, Cox-Singh J Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members. PLoS Negl Trop Dis 2014; 8: e3086. https://doi.org/10.1371/journal.pntd.0003086
  20. Ahmed MA, Chu KB, Vythilingam I, Quan FS. Within-population genetic diversity and population structure of Plasmodium knowlesi merozoite surface protein 1 gene from geographically distinct regions of Malaysia and Thailand. Malar J 2018; 17: 442. https://doi.org/10.1186/s12936-018-2583-z
  21. Puentes A, Garcia J, Ocampo M, Rodriguez L, Vera R, Curtidor H, Lopez R, Suarez J, Valbuena J, Vanegas M, Guzman F, Tovar D, Patarroyo ME. P. falciparum: merozoite surface protein-8 peptides bind specifically to human erythrocytes. Peptides 2003; 24: 1015-1023. https://doi.org/10.1016/S0196-9781(03)00185-2
  22. Cheng Y, Wang B, Changrob S, Han JH, Sattabongkot J, Ha KS, Chootong P, Lu F, Cao J, Nyunt MH, Park WS, Hong SH, Lim CS, Tsuboi T, Han ET. Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 8 in patients with P. vivax infection. Malar J 2017; 16: 211. https://doi.org/10.1186/s12936-017-1837-5
  23. Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, Escalante AA. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. Infect Genet Evol 2012; 12: 978-986. https://doi.org/10.1016/j.meegid.2012.02.009
  24. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  26. Ahmed MA, Fauzi M, Han ET. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia. Malar J 2018; 17: 115. https://doi.org/10.1186/s12936-018-2256-y
  27. Han JH, Cho JS, Cheng Y, Muh F, Yoo WG, Russell B, Nosten F, Na S, Ha KS, Park WS, Hong SH, Han ET. Plasmodium vivax merozoite durface protein 1 paralog as a mediator of parasite adherence to reticulocytes. Infect Immun 2018; 86.
  28. Min HMK, Changrob S, Soe PT, Han JH, Muh F, Lee SK, Chootong P, Han ET. Immunogenicity of the Plasmodium vivax merozoite surface protein 1 paralog in the induction of naturally acquired antibody and memory B cell responses. Malar J 2017; 16: 354. https://doi.org/10.1186/s12936-017-2000-z
  29. Cheng Y, Wang Y, Ito D, Kong DH, Ha KS, Chen JH, Lu F, Li J, Wang B, Takashima E, Sattabongkot J, Tsuboi T, Han ET. The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun 2013; 81: 1585-1595. https://doi.org/10.1128/IAI.01117-12
  30. Ahmed MA, Chu KB, Quan FS. The Plasmodium knowlesi Pk41 surface protein diversity, natural selection, sub population and geographical clustering: a 6-cysteine protein family member. PeerJ 2018; 6: e6141. https://doi.org/10.7717/peerj.6141