• Title/Summary/Keyword: protein structure

Search Result 1,718, Processing Time 0.024 seconds

Biophysical effect of lipid modification at palmitoylation site on the structure of Caveolin 3

  • Ma, Yu-Bin;Kang, Dong-Hoon;Kim, Myeongkyu;Kim, Ji-Hun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.67-72
    • /
    • 2019
  • Caveolae are small plasma membrane invaginations that play many roles in signal transduction, endocytosis, mechanoprotection, lipid metabolism. The most important protein in caveolae is the integral membrane protein, caveolin, which is divided into three families such as caveolin 1, caveolin 2, and caveolin 3. Caveolin 1 and 3 are known to incorporate palmitate through linkage to three cysteine residues. Regulation of the protein palmitoylation cycle is important for the cellular processes such as intracellular localization of the target protein, membrane association, conformation, protein-protein interaction, and activity. However, the detailed aspect of individual palmitoylation has not been studied. In the present work, the role of each lipid modification at three cysteines was studied by NMR. Our results suggest that each lipid modification at the natively palmitoylation site has its own roles. For example, lipidations to C106 and C129 are play a role in structural stabilization, however, interestingly, lipid modification to C116 interrupts the structural stabilization.

Effect of Rice Protein on the Network Structure of Jeung-Pyun (증편 구조에 미치는 쌀 단백질의 영향)

  • 이해은;이아영;박주연;우경자;한영숙
    • Korean journal of food and cookery science
    • /
    • v.20 no.4
    • /
    • pp.396-402
    • /
    • 2004
  • The aim of this study was to examine the effect of rice protein on the network structure of the Jeung-Pyun. The major component of Jeung-Pyun rice protein was extracted, the change of rice protein during the Jeung-Pyun fermentation was assessed, and the effect on the viscosity and volume of adding protease to Jeung-Pyun was investigated. In addition, the result of adding protein to rice starch on the viscosity and volume of Jeung-Pyun was that the rice protein mediated the volume and expansion ability. The results were as follows. In rice and dough of Jeung-Pyun, the SDS soluble protein content was higher than that of wheat flour and no change was detected in the amount of extracted protein with the fermentation time. However, in the FPLC pattern, low molecular weight peaks were decreased with the fermentation time, which indicates the increase in the ratio of high molecular weight substances. In contrast, the addition of protease substantially decreased, the viscosity and volume of Jeung-Pyun, whereas the viscosity and volume were increased by adding protein to rice starch in order to reconstitute Jeung-Pyun. This suggested that rice protein in Jeung-Pyun had a mediating effect on both the volume and the formation of the texture.

Binding Mode Analysis of Bacillus subtilis Obg with Ribosomal Protein L13 through Computational Docking Study

  • Lee, Yu-No;Bang, Woo-Young;Kim, Song-Mi;Lazar, Prettina;Bahk, Jeong-Dong;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.3.1-3.6
    • /
    • 2009
  • Introduction: GTPases known as translation factor play a vital role as ribosomal subunit assembly chaperone. The bacterial Obg proteins ($Spo{\underline{0B}}$-associated ${\underline{G}}TP$-binding protein) belong to the subfamily of P-loop GTPase proteins and now it is considered as one of the new target for antibacterial drug. The majority of bacterial Obgs have been commonly found to be associated with ribosome, implying that these proteins may play a fundamental role in ribosome assembly or maturation. In addition, one of the experimental evidences suggested that Bacillus subtilis Obg (BsObg) protein binds to the L13 ribosomal protein (BsL13) which is known to be one of the early assembly proteins of the 50S ribosomal subunit in Escherichia coli. In order to investigate binding mode between the BsObg and the BsL13, protein-protein docking simulation was carried out after generating 3D structure of the BsL13 structure using homology modeling method. Materials and Methods: Homology model structure of BsL13 was generated using the EcL13 crystal structure as a template. Protein-protein docking of BsObg protein with ribosomal protein BsL13 was performed by DOT, a macro-molecular docking software, in order to predict a reasonable binding mode. The solvated energy minimization calculation of the docked conformation was carried out to refine the structure. Results and Discussion: The possible binding conformation of BsL13 along with activated Obg fold in BsObg was predicted by computational docking study. The final structure is obtained from the solvated energy minimization. From the analysis, three important H-bond interactions between the Obg fold and the L13 were detected: Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. The interaction between the BsObg and BsL13 structures were also analyzed by electrostatic potential calculations to examine the interface surfaces. From the results, the key residues for hydrogen bonding and hydrophobic interaction between the two proteins were predicted. Conclusion and Prospects: In this study, we have focused on the binding mode of the BsObg protein with the ribosomal BsL13 protein. The interaction between the activated Obg and target protein was investigated with protein-protein docking calculations. The binding pattern can be further used as a base for structure-based drug design to find a novel antibacterial drug.

Backbone 1H, 15N, and 13C Resonance Assignments and Secondary Structure of a Novel Protein OGL-20PT-358 from Hyperthermophile Thermococcus thioreducens sp. nov.

  • Wilson, Randall C.;Hughes, Ronny C.;Curto, Ernest V.;Ng, Joseph D.;Twigg, Pamela D.
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.437-440
    • /
    • 2007
  • $OGL-20P^T$-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain $OGL-20P^T$, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of $OGL-20P^T$-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily ${\alpha}$-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein.

Two Algorithms for Constructing the Voronoi Diagram for 3D Spheres and Applications to Protein Structure Analysis (삼차원 구의 보로노이 다이어그램 계산을 위한 두 가지 알고리듬 및 단백질구조채석에의 응용)

  • Kim D.;Choi Y.;Kim D.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.97-106
    • /
    • 2006
  • Voronoi diagrams have been known for numerous important applications in science and engineering including CAD/CAM. Especially, the Voronoi diagram for 3D spheres has been known as very useful tool to analyze spatial structural properties of molecules or materials modeled by a set of spherical atoms. In this paper, we present two algorithms, the edge-tracing algorithm and the region-expansion algorithm, for constructing the Voronoi diagram of 3D spheres and applications to protein structure analysis. The basic scheme of the edge-tracing algorithm is to follow Voronoi edges until the construction is completed in O(mn) time in the worst-case, where m and n are the numbers of edges and spheres, respectively. On the other hand, the region-expansion algorithm constructs the desired Voronoi diagram by expanding Voronoi regions for one sphere after another via a series of topology operations, starting from the ordinary Voronoi diagram for the centers of spheres. It turns out that the region-expansion algorithm also has the worst-case time complexity of O(mn). The Voronoi diagram for 3D spheres can play key roles in various analyses of protein structures such as the pocket recognition, molecular surface construction, and protein-protein interaction interface construction.

Crystallization of Escherichia coli IciA Protein An Initiation of Chroirnsomal Replication (대장균 염색체 복제 개시 저해제, IciA 단백질의 결정화)

  • Song, Hyun-Kyu;Cha, Hoon;Yoo, Soon-Ji;Chung, Chin-Ha;Hwang, Deog-Su;Suh, Se-Won
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.20-23
    • /
    • 1994
  • Specific binding to the oric region of E, coli chromsome by IciA protein inhibits initiation of chrorrnsomal replication in vitro by blocking the opening of this region effected by the initiator DnaA protein. The IciA protein has been suggested play a critical role in a key stage of the cell cycle. In order to study the structure-function relationship of IciA protein, we are determining the three-dimensional structure of IciA Votein by X-ray crystallography, As a first step toward its structure detumination E. coli IciA protein has been crystallized using sodium formate as a precipitant.

  • PDF

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Identification of Viral Taxon-Specific Genes (VTSG): Application to Caliciviridae

  • Kang, Shinduck;Kim, Young-Chang
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.23.1-23.5
    • /
    • 2018
  • Virus taxonomy was initially determined by clinical experiments based on phenotype. However, with the development of sequence analysis methods, genotype-based classification was also applied. With the development of genome sequence analysis technology, there is an increasing demand for virus taxonomy to be extended from in vivo and in vitro to in silico. In this study, we verified the consistency of the current International Committee on Taxonomy of Viruses taxonomy using an in silico approach, aiming to identify the specific sequence for each virus. We applied this approach to norovirus in Caliciviridae, which causes 90% of gastroenteritis cases worldwide. First, based on the dogma "protein structure determines its function," we hypothesized that the specific sequence can be identified by the specific structure. Firstly, we extracted the coding region (CDS). Secondly, the CDS protein sequences of each genus were annotated by the conserved domain database (CDD) search. Finally, the conserved domains of each genus in Caliciviridae are classified by RPS-BLAST with CDD. The analysis result is that Caliciviridae has sequences including RNA helicase in common. In case of Norovirus, Calicivirus coat protein C terminal and viral polyprotein N-terminal appears as a specific domain in Caliciviridae. It does not include in the other genera in Caliciviridae. If this method is utilized to detect specific conserved domains, it can be used as classification keywords based on protein functional structure. After determining the specific protein domains, the specific protein domain sequences would be converted to gene sequences. This sequences would be re-used one of viral bio-marks.

Structure and catalytic mechanism of human protein tyrosine phosphatome

  • Kim, Seung Jun;Ryu, Seong Eon
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.693-699
    • /
    • 2012
  • Together with protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs) serve as hallmarks in cellular signal transduction by controlling the reversible phosphorylation of their substrates. The human genome is estimated to encode more than 100 PTPs, which can be divided into eleven sub-groups according to their structural and functional characteristics. All the crystal structures of catalytic domains of sub-groups have been elucidated, enabling us to understand their precise catalytic mechanism and to compare their structures across all sub-groups. In this review, I describe the structure and mechanism of catalytic domains of PTPs in the structural context.

Protein Structure Alignment Based on Maximum of Residue Pair Distance and Similarity Graph (정렬된 잔기 사이의 최대거리와 유사도 그래프에 기반한 단백질 구조 정렬)

  • Kim, Woo-Cheol;Park, Sang-Hyun;Won, Jung-Im
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.396-408
    • /
    • 2007
  • After the Human Genome Project finished the sequencing of a human DNA sequence, the concerns on protein functions are increasing. Since the structures of proteins are conserved in divergent evolution, their functions are determined by their structures rather than by their amino acid sequences. Therefore, if similarities between two protein structures are observed, we could expect them to have common biological functions. So far, a lot of researches on protein structure alignment have been performed. However, most of them use RMSD(Root Mean Square Deviation) as a similarity measure with which it is hard to judge the similarity level of two protein structures intuitively. In addition, they retrieve only one result having the highest alignment score with which it is hard to satisfy various users of different purpose. To overcome these limitations, we propose a novel protein structure alignment algorithm based on MRPD(Maximum of Residue Pair Distance) and SG (Similarity Graph). MRPD is more intuitive similarity measure by which fast tittering of unpromising pairs of protein pairs is possible, and SG is a compact representation method for multiple alignment results with which users can choose the most plausible one among various users' needs by providing multiple alignment results without compromising the time to align protein structures.