Browse > Article
http://dx.doi.org/10.6564/JKMRS.2019.23.3.067

Biophysical effect of lipid modification at palmitoylation site on the structure of Caveolin 3  

Ma, Yu-Bin (College of Pharmacy, Chungbuk National University Cheongju)
Kang, Dong-Hoon (College of Pharmacy, Chungbuk National University Cheongju)
Kim, Myeongkyu (Protein Structure Group, Korea Basic Science Institute)
Kim, Ji-Hun (College of Pharmacy, Chungbuk National University Cheongju)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.23, no.3, 2019 , pp. 67-72 More about this Journal
Abstract
Caveolae are small plasma membrane invaginations that play many roles in signal transduction, endocytosis, mechanoprotection, lipid metabolism. The most important protein in caveolae is the integral membrane protein, caveolin, which is divided into three families such as caveolin 1, caveolin 2, and caveolin 3. Caveolin 1 and 3 are known to incorporate palmitate through linkage to three cysteine residues. Regulation of the protein palmitoylation cycle is important for the cellular processes such as intracellular localization of the target protein, membrane association, conformation, protein-protein interaction, and activity. However, the detailed aspect of individual palmitoylation has not been studied. In the present work, the role of each lipid modification at three cysteines was studied by NMR. Our results suggest that each lipid modification at the natively palmitoylation site has its own roles. For example, lipidations to C106 and C129 are play a role in structural stabilization, however, interestingly, lipid modification to C116 interrupts the structural stabilization.
Keywords
Caveolae; Caveolin3; lipidation; NMR; transverse relaxation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney, and R. G. Anderson, Cell 68, 673 (1992)   DOI
2 E. Yamada, J. Biophys. Biochem. Cytol. 1, 445 (1955)   DOI
3 R. G. Parton and K. Simons, Nat. Rev. Mol. Cell Biol. 8, 185 (2007)   DOI
4 T. M. Williams and M. P. Lisanti, Ann. Med. 36, 584 (2004)   DOI
5 L. Kozera, E. White, and S. Calaghan, PLoS One 4, e8312 (2009)   DOI
6 B. Razani, S. E. Woodman, and M. P. Lisanti, Pharmacol. Rev. 54, 431 (2002)   DOI
7 T. V. Kurzchalia, P. Dupree, R. G. Parton, R. Kellner, H. Virta, M. Lehnert, and K. Simons, J. Cell Biol. 118, 1003 (1992)   DOI
8 M. Bastiani and R. G. Parton, J. Cell Sci. 123, 3831 (2010)   DOI
9 F. Galbiati, B. Razani, and M. P. Lisanti, Trends Mol. Med. 7, 435 (2001)   DOI
10 M. Drab, P. Verkade, M. Elger, M. Kasper, M. Lohn, B. Lauterbach, J. Menne, C. Lindschau, F. Mende, F. C. Luft, A. Schedl, H. Haller, and T. V. Kurzchalia, Science 293, 2449 (2001)   DOI
11 A. M. Fra, E. Williamson, K. Simons, and R. G. Parton, Proc. Natl. Acad. Sci. USA 92, 8655 (1995)
12 M. T. Dotti, A. Malandrini, S. Gambelli, C. Salvadori, N. De Stefano, and A. Federico, J. Neurol. Sci 243, 61 (2006)   DOI
13 S. E. Woodman, F. Sotgia, F. Galbiati, C. Minetti, and M. P. Lisanti, Neurology 62, 538 (2004)   DOI
14 M. Sargiacomo, P. E. Scherer, Z. Tang, E. Kubler, K. S. Song, M. C. Sanders, and M. P. Lisanti, Proc. Natl. Acad. Sci. USA 92, 9407 (1995)
15 G. Whiteley, R. F. Collins, and A. Kitmitto, J. Biol. Chem. 287, 40302 (2012)   DOI
16 A. Hayer, M. Stoeber, D. Ritz, S. Engel, H. H. Meyer, and A. Helenius, J. Cell Biol. 191, 615 (2010)   DOI
17 J. Lee and K. J. Glover, Biochim. Biophys. Acta. 1818, 1158 (2012)   DOI
18 D. J. Dietzen, W. R. Hastings, and D. M. Lublin, J. Biol. Chem. 270, 6838 (1995)   DOI
19 D. el-Husseini Ael and D. S. Bredt, Nat. Rev. Neurosci. 3, 791 (2002)   DOI
20 E. Conibear and N. G. Davis, J. Cell Sci. 123, 4007 (2010)   DOI
21 M. Linder and R. Deschenes, Methods 40, 125 (2006)   DOI
22 S. Monier, D. J. Dietzen, W. R. Hastings, D. M. Lublin, and T. V. Kurzchalia, FEBS Lett. 388, 143 (1996)   DOI
23 F. Galbiati, D. Volonte, C. Minetti, J. B. Chu, and M. P. Lisanti, J. Biol. Chem. 274, 25632 (1999)   DOI
24 J. H. Kim, D. Peng, J. P. Schlebach, A. Hadziselimovic, and C. R. Sanders, Biochemistry 53, 4320 (2014)   DOI
25 D. Nietlispach, J. Biomol. NMR. 31, 161 (2005)   DOI
26 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)   DOI
27 T. D. Goddard and D. G. Kneller, SPARKY 3. University of California, San Francisco, CA (2003)
28 I. R. Kleckner and M. P. Foster, Biochim. Biophys. Acta 1814, 942 (2011)   DOI
29 H. Lee, S. E. Woodman, J. A. Engelman, D. Volonte, F. Galbiati, H. L. Kaufman, D. M. Lublin, and M. P. Lisanti, J. Biol. Chem. 276, 35150 (2001)   DOI