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SYNOPSIS 

 
Introduction: GTPases known as translation factor play a vital role as ribosomal subunit 
assembly chaperone. The bacterial Obg proteins (Spo0B-associated GTP-binding protein) 
belong to the subfamily of P-loop GTPase proteins and now it is considered as one of the 
new target for antibacterial drug. The majority of bacterial Obgs have been commonly 
found to be associated with ribosome, implying that these proteins may play a fundamental 
role in ribosome assembly or maturation. In addition, one of the experimental evidences 
suggested that Bacillus subtilis Obg (BsObg) protein binds to the L13 ribosomal protein 
(BsL13) which is known to be one of the early assembly proteins of the 50S ribosomal 
subunit in Escherichia coli. In order to investigate binding mode between the BsObg and 
the BsL13, protein-protein docking simulation was carried out after generating 3D structure 
of the BsL13 structure using homology modeling method. 
Materials and Methods: Homology model structure of BsL13 was generated using the 
EcL13 crystal structure as a template. Protein-protein docking of BsObg protein with 
ribosomal protein BsL13 was performed by DOT, a macro-molecular docking software, in 
order to predict a reasonable binding mode. The solvated energy minimization calculation 
of the docked conformation was carried out to refine the structure. 
Results and Discussion: The possible binding conformation of BsL13 along with 
activated Obg fold in BsObg was predicted by computational docking study. The final 
structure is obtained from the solvated energy minimization. From the analysis, three 
important H-bond interactions between the Obg fold and the L13 were detected: 
Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. The 
interaction between the BsObg and BsL13 structures were also analyzed by electrostatic 
potential calculations to examine the interface surfaces. From the results, the key residues 
for hydrogen bonding and hydrophobic interaction between the two proteins were predicted. 
Conclusion and Prospects: In this study, we have focused on the binding mode of the 
BsObg protein with the ribosomal BsL13 protein. The interaction between the activated 
Obg and target protein was investigated with protein-protein docking calculations. The 
binding pattern can be further used as a base for structure-based drug design to find a 
novel antibacterial drug. 
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Introduction 
 
GTP binding proteins play an essential role in diverse biological 

processes including signal transduction, protein synthesis, 
membrane trafficking and cell proliferation (Bourne et al., 1991), 
and they form a GTPase superclass whose sequence motifs (G1-
G5) are conserved in almost all organisms ranging from prokaryotes 
to eukaryotes (Leipe et al., 2002). Notably, Obg subfamily proteins 
are the GTPases essential for the viability of nearly all bacteria, and 
they are widely distributed in eukaryotes as well as bacteria. The 
GTPases such as Era, Obg, YjeQ and YlqF have been widely 
studied and also known as translation factor. Recently they are also 
considered as a new target for antibacterial drug (Comartin and 
Brown, 2006). 
 

Currently, Obg family is one of the GTPase families that can be 
found in all domains of life. The Obg protein (Spo0B-associated 
GTP-binding protein) was originally identified in Bacillus subtilis (B. 
subtilis) as the gene having a GTPase domain located downstream 
of Spo0B (Trach and Hoch, 1989; Kok et al., 1994; Vidwans et al., 
1995), and the B. subtilis Obg (BsObg) has been reported to be 
essential for the early steps of sporulation and for stress-dependent 
activation of the σB transcription factor that controls a cellular 
response to environmental stress (Scott and Haldenwang, 1999; 
Scott et al., 2000). Besides the BsObg, its bacterial homologs in 
Caulobacter crescentus, Streptomyces coelicolor, Streptomyces 
griseus and Vibrio harveyi have been shown to be essential for cell 
growth, morphological differentiation and DNA replication (Maddock 
et al., 1997; Okamoto and Ochi, 1998; Slominska et al., 2002). The 
ObgE, which is an Obg homolog in Escherichia coli (E. coli), has 
also been reported to be involved in chromosome partitioning, the 
regulation of DNA replication and DNA repair process as well as cell 
growth (Kobayashi et al., 2001; Dutkiewicz et al., 2004). Although 
the basic functions of the Obg subfamily proteins are not clearly 
proved, the majority of bacterial Obgs have been commonly found 
to be associated with ribosome (Scott et al., 2000; Lin et al., 2004; 
Datta et al., 2004; Wout et al., 2004; Sikora et al., 2006; Sato et al., 
2005; Tan et al., 2002; Jiang et al., 2006) implying that these 
proteins may play a role in ribosome assembly or maturation. 
 

Generally, prokaryotes have 70S ribosomes, each consisting of a 
30S small subunit which includes 16S ribosomal RNAs (rRNAs) 
with S1-S21 ribosomal proteins and a 50S large subunit which 
contains ribosomal RNAs 5S, 23S with L1–L36 as ribosomal 
proteins. Ribosomal protein L13 is one of the proteins that forms the 
large ribosomal subunit. L13 is known to be one of the early 
assembly proteins of the 50S ribosomal subunit in E. coli 
(Ramakrishnan and Moore, 2001; Maguire and Zimmermann, 2001; 
Chandra Sanyal and Liljas, 2000; Chan et al., 1994). There are 
some experimental evidences which reveal the specific binding of 
Obg with ribosomal protein L13 through an affinity blot assay 
method (Scott et al., 2000). 
 

The main objective of this study was to investigate the proper 
binding mode between the BsL13 (B. subtilis L13) and the activated 
Obg fold in BsObg. In order to achieve the goal, we have 
constructed the 3D BsL13 structure using homology modeling to 
create the same environment with the experimental study. And then 
protein-protein docking study was followed to find out proper 
binding conformation between the Obg fold and L13. Finally energy 
minimization procedure is performed to refine the docked structure. 
We expect that our result will be helpful for the structure-based drug 
design for the target protein as an antibacterial agent. 
 
 
Results and Discussion 
 
1. Analysis of the activated BsObg structure 

Based on the two crystal structures of B. subtilis and Thermus 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Key element of BsObg structure. Crystal structure of BsObg 
(PDB ID: 1LNZ) shows Obg fold (residues 1-158) and GTPase domain (residues 
159-342) which comprises of switch 1 (red) and switch 2 (blue) elements. C 
positions were numbered every 20 residues.  
 
thermophilus (T. thermophilus) Obg proteins, structural features of 
Obg proteins have been elucidated. The Obg proteins contain two 
equally and highly conserved structural domains, a C-terminal GTP 
binding domain and an N-terminal glycine-rich domain which is 
referred as the “Obg fold” (Buglino et al., 2002; Kukimoto-Niino et 
al., 2004) (Fig. 1). Upon binding of GTP, Obg protein becomes 
active. It is assumed that such a binding will lead to structural 
changes within the Obg fold and subsequently it triggers the 
functional role of the protein. It is already suggested that the Obg 
fold may be the main platform for protein-protein interaction 
(Buglino et al., 2002). The orientation of Obg fold may be regulated 
by guanine nucleotides and further the switch element recognition 
of GTP-bound configurations can trigger a conformational 
rearrangement between the domains (Buglino et al., 2002; 
Kukimoto-Niino et al., 2004). However, the GTP-bound structure of 
the Obg protein is not determined yet. Thus, we obtained the 
putative activated form of Obg fold from the 10 ns molecular 
dynamics (MD) simulation of the GTP-bound BsObg structure.  
 

The Obg fold has highly conserved positively charged residues in 
the middle of the loop. This makes the loop highly electropositive in 
nature (Fig. 2) and gives way for the preferential interaction with the 
ribosomal protein L13 which has highly electronegative (Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Electrostatic potential (ESP) surface for the BsObg 
protein. Positive and negative charges are shown as blue and red, respectively: 
front view (A) and back view (B). 
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Figure 3. Homology modeled structure of BsL13 with EcL13 as template. Secondary structures of the superimposed EcL13 (orange) and BsL13 (yellow) 
structures (A) and their individual structure representations  EcL13 (B) and BsL13 (C) are represented as cartoons. The electrostatic potential surfaces of the EcL13 (D) and 
BsL13 (E) homology model are shown. 
 
2. Building the 3D BsL13 structure by homology modeling 

Homology modeling of BsL13 was carried out using the crystal 
structure of EcL13 (Escherichia coli L13, PDB ID: 1VS6) as a 
template (Fig. 3). The EcL13 belongs to the same bacterial source 
and blastp results showed the best hit with 59% sequence identity 
and 75% similarity. Sequence alignment between EcL13 and BsL13 
was performed using ClustalW2 program that gave improved 
similarity of value 78.7% with reliable sequence-structure mapping. 
The reasonable 3D structure of the BsL13 was generated by 
MODELLER, which was then considered as the final homology 
modeled structure (Fig. 3B). For the model structure, PROCHECK 
(Schuwirth et al., 2006) predicted 68.5% of residues lying in the 
most favored regions, unlike the template protein residues which 
had about 41.7% due to low crystallographic resolution. The root 
mean square deviation (RMSD) between the template structure of 
EcL13 and the homology model of BsL13 is 1.4 Å. Homology) 
model structure of BsL13 shows similar electrostatic potential (ESP 
distribution with that of the EcL13 (Fig. 3D and 3E). 
 
3. The L13 structure inside the large ribosomal subunit 

Ribosomal protein L13 is one of five proteins required for an early 
folding of the intermediate of 23S rRNA in the large ribosomal         
 
 
 
 
 
 
 
 
 
 
 
 
 
 

subunit maturation (Ramakrishnan and Moore, 2001; Maguire and 
Zimmermann, 2001; Chandra Sanyal and Liljas, 2000; Chan et al., 
1994). The L13 is located at the bottom of the large subunit, near 
the polypeptide exit site. The L13 can interact with proteins L3 and 
L6, and form an extensive network of interactions with 23S rRNA. In 
the electrostatic potential map, while the positively charged residues 
of L13 structure are fitted into the 23S rRNA, the negatively charged 
residues of L13 structure are exposed at outside for the interaction 
with the Obg fold which is highly electropositive in nature (Fig. 4). It 
has been already discussed that such electrostatic details are 
necessary for the ribosome assembly (unpublished data).  
 
4. Protein-protein docking between Obg and L13 proteins 

The interaction between the activated BsObg fold and the BsL13 
protein was investigated with protein-protein docking calculations by 
DOT 2.0 (Mandell et al., 2001; Adesokan et al., 2003). The analysis 
of the DOT results was focused on the Obg fold, because the fold is 
expected to be the contact point with the L13. Among the top-
ranked DOT protein-protein complexes, the best 2000 structure 
were reevaluated with ACE (pairwise atomic contact energy) score. 
The ACE is the free energy necessary to replace two residue-water 
contacts by the corresponding residue-residue and water-water      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 4. L13 structure in the large ribosomal subunit. (A) Secondary structure of bound L13 represented as cartoons mode (yellow) in 23S rRNA shown as 
electrostatic surface model (red). The negatively charged residues and the positively charged residues are shown in red and blue, respectively. (B) Clock-wise 90 degree 
rotation of the zoomed portion of L13 as highlighted by an arrow in panel (A). (C) Side view of panel (B) to clearly show the exposed part. (D) and (E) show the L13 in (B) and 
(C) as surface model. 
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Figure 5. The optimized structure obtained from the protein-protein docking calculation and solvated energy minimization. Binding conformation of 
the Obg fold (red) with the homology modeled structure of BsL13 (yellow) is represented as cartoon (A) and the detailed view of the key residues (B). 
 
contacts by the corresponding residue-residue and water-water 
contacts (Chao et al., 1997). The best ranked placement was 
selected by the energy scores including electrostatic energy, van 
der Waals energy and the ACE. Finally the optimized structure was 
obtained after solvated minimization with the best ranked placement 
(Fig. 5). Three hydrogen bonds and many hydrophobic contacts 
were detected. Three important H-bond interactions between the 
Obg and the L13 were predicted from the protein-protein docking 
study: Obg:Tyr27-L13:Glu32, Obg:Asn76-L13:Glu139, and 
Obg:Ala136-L13:Glu142 (Fig. 5B). 
 

The differences in the ESP surfaces of the activated Obg fold and 
the homology model of L13 are clearly depicted by two successive 
45 degrees rotations (Fig. 6). The ESP surface examination shows 
that the positively charged face of the activated Obg fold interacts 
with the negatively charged face of the homology model of L13. The 
entire view including the large ribosomal subunit shows that the 
Obg fold binds only to the exposed surface of the L13, having no 
contacts with another region of 23S rRNA (Fig. 7). Such an 
assessment from the docked structure substantiates the interaction 
between the two proteins. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion and Prospects 
 

The bacterial Obg protein belongs to a subfamily of GTP binding 
proteins. Recently BsObg is recognized as one of the new targets 
for antibacterial drug. The Obg protein consists of GTP binding 
domain and a unique Obg fold which is assumed to have an 
important role in interaction with binding partner.  The interaction 
between the putative activated form of Obg fold and target protein 
(L13) was further investigated through protein-protein docking 
calculations. From this, three important H-bond interactions 
between Obg fold and L13 were predicted: Obg:Tyr27-L13:Glu32, 
Obg:Asn76-L13:Glu139, and Obg:Ala136-L13:Glu142. Our result 
can provide more detailed information on the experimental data 
which show the interaction between the BsObg and the BsL13 
(Scott et al., 2000). 
 

Thus from our study, we were able to predict the possible binding 
conformation of the activated form of Obg fold with L13, which is 
essential for ribosome assembly. Site-directed mutagenesis 
experiments can be carried out to validate our results, which can be 
further used in structure-based drug design (SBDD) for finding  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Electrostatic surfaces of the activated Obg fold with the homology model of L13. The activated Obg fold (left) and the homology model of L13 
(right) are shown with electrostatic surface and each structure is consecutively rotated by 45 degrees for clarity. The circled shows the docked structure of the activated Obg 
fold with the L13. 
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Figure 7. Binding model between the Obg fold and the L13 bound to the large ribosomal subunit. The secondary structure of Obg fold (cyan) bound to 
the L13 (yellow) in the 23S rRNA (red, electrostatic surface model) is shown as cartoon model (A) and surface model (B and C). Panel C shows a different angle view from the 
view in panel B for clarity. The negatively charged residues and the positively charged residues are shown in red and blue, respectively. (B) Shows Obg fold with L13 as 
surface model. (C) Front view of figure (B) to clearly show that they are not overlapped. 
 
antibacterial drug. 
 
 
Materials and Methods 
 
Preparation of BsObg and BsL13 protein structures 
(1) BsObg protein structure 

The 3D structure of activated BsObg was taken from the 10 ns 
MD simulation for the GTP bound form of the protein obtained from 
protein data bank (PDB) structure (PDB ID: 1LNZ) (Mandell et al., 
2001). This coordinate of the activated BsObg was selected as the 
representative structure which was found to be the most closed 
conformation to the average structure from the last 2 ns trajectories. 
Polar hydrogen atoms were added to all molecules with the 
Discovery Studio (Accelrys Inc., San Diego, CA, USA). The GTPase 
domain with GTP and counterions were removed before the 
docking simulation to focus on the Obg fold. 
 
(2) Homology modeling of BsL13 structure 

Sequence database search was performed with standard tools, 
such as blastp and PSI-BLAST to identify the homologue of known 
structure from the PDB. The coordinates of the EcL13 crystal 
structure (Escherichia coli L13, PDB ID: 1VS6) (Schuwirth et al., 
2006) was used as a template to construct the initial homology 
model of BsL13 (Bacillus subtilis L13). Sequence alignment 
between EcL13 and BsL13 was carried out by ClustalW2 program 
(http://www.ebi.ac.uk/Tools/clustalw2/index.html) (Larkin et al., 
2007). The construction of 3D homology model based on the 
alignment was performed using MODELLER module in Discovery 
Studio. The final BsL13 model was validated by PROCHECK 
(Laskowski et al., 1993) along with the evaluation of stereochemical 
qualities. 
 
Electrostatic potential surface calculation 

The electrostatic potential surfaces for the proteins in Fig. 2, 3, 
and 6 were calculated by APBS and displayed by PyMOL (Baker et 
al., 2001) and the ESP surface for the large structure such as the 
ribosomal subunit in Fig. 4 and 7 were calculated by DelPhi and 
drawn by Discovery Studio. The dielectric constants of 80 and 2 
were used for the solvent and the protein, respectively and the ESP 
surface for the contours from -1 kT/e (red) to +1 kT/e (blue) were 
visualized. 
 
Protein-protein docking calculation by DOT 

DOT (Daughter of Turnip) is a macromolecule-macromolecule 
docking program that provides a complete search of all orientations 
between two rigid molecules by systematic rotation and translation 
of one molecule about another (Mandell et al., 2001; Adesokan et 
al., 2003). We used this docking program to find out the probable 
binding conformation between BsObg and BsL13 considering 
former molecule as stationary molecule and the later one as moving 

molecule. Almost 54,000 different translated orientations of BsL13 
was obtained about the stationary molecule BsObg which was 
enclosed in an implicitly solvated point grid of dimension 160 × 160 
× 160. The application of implicitly solvated electrostatics computed 
by UHBD (University of Houston Brownian Dynamics) and sampled 
by DOT resulted in the computation of energies of more than 221 
billion configurations for protein docking study. Since DOT program 
can perform a complete search, long-range as well as short-range 
interactions can be examined. 
 
Solvated energy minimization 

Energy minimization (EM) is needed to provide flexibility and 
refinement to the docked structure because the DOT program uses 
rigid molecules for its calculation. The solvated EM was carried out 
using the GROMACS program (version 3.3.1) (Berendsen et al., 
1995; van der Spoel et al., 2005) with GROMOS87 force field. The 
initial structure was immersed in an orthorhombic water box (0.8 nm 
thickness) and the net charge was neutralized by the addition of 14 
Cl- counterions. Long range electrostatics were handled using the 
particle mesh Ewald (PME) method (Darden et al., 1993). In a 
system, protein alone consists of 2,986 atoms and the entire system 
is made up of 61,537 atoms which includes 19,517 water molecules. 
The steepest descent EM algorithm was used to remove possible 
bad contacts from the initial structures until energy convergence 
reached to 2,000 kJ mol-1 nm-1. 
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