• Title/Summary/Keyword: protein stability

Search Result 1,070, Processing Time 0.033 seconds

Enhanced In Vitro Protein Synthesis Through Optimal Design of PCR Primers

  • Ahn Jin-Ho;Son Jeong-Mi;Hwang Mi-Yeon;Kim Tae-Wan;Park Chang-Kil;Choi Cha-Yong;Kim Dong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.355-359
    • /
    • 2006
  • The functional stability of mRNA is one of the crucial factors affecting the efficiency of in vitro translation. As the rapid degradation of mRNA in the cell extract (S30 extract) causes early termination of the translational reactions, extending the mRNA half-life will improve the productivity of the in vitro protein synthesis. Thus, a simple PCR-based method is introduced to increase the stability of mRNA in an S30 extract. The target genes are PCR-amplified with primers designed to make the ends of the transcribed mRNA molecule anneal to each other. When compared with normal mRNA, the mRNA with the annealing sequences resulted in an approximately 2-fold increase of protein synthesis in an in vitro translation reaction. In addition, sequential transcription and translation reactions in a single tube enabled direct protein expression from the PCR-amplified genes without any separate purification of the mRNA.

FADD Phosphorylation Modulates Blood Glucose Levels by Decreasing the Expression of InsulinDegrading Enzyme

  • Lin, Yan;Liu, Jia;Chen, Jia;Yao, Chun;Yang, Yunwen;Wang, Jie;Zhuang, Hongqin;Hua, Zi-Chun
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.373-383
    • /
    • 2020
  • Our previous study revealed a novel role of Fas-associated death domain-containing protein (FADD) in islet development and insulin secretion. Insulin-degrading enzyme (IDE) is a zinc metalloprotease that selectively degrades biologically important substrates associated with type 2 diabetes (T2DM). The current study was designed to investigate the effect of FADD phosphorylation on IDE. We found that the mRNA and protein levels of IDE were significantly downregulated in FADD-D mouse livers compared with control mice. Quantitative real-time polymerase chain reaction analysis showed that FADD regulates the expression of IDE at the transcriptional level without affecting the stability of the mRNA in HepG2 cells. Following treatment with cycloheximide, the IDE protein degradation rate was found to be increased in both FADD-D primary hepatocytes and FADD-knockdown HepG2 cells. Additionally, IDE expression levels were reduced in insulin-stimulated primary hepatocytes from FADD-D mice compared to those from control mice. Moreover, FADD phosphorylation promotes nuclear translocation of FoxO1, thus inhibiting the transcriptional activity of the IDE promoter. Together, these findings imply a novel role of FADD in the reduction of protein stability and expression levels of IDE.

Surface Properties of Liposomes Modified with Poly(ethylenimine) (폴리에틸렌이민으로 개질된 리포솜의 표면 특성)

  • 박윤정;남다은;서동환;한희동;김태우;김문석;신병철
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.502-508
    • /
    • 2004
  • Cationic liposomes for cancer treatment have been developed in the field of chemotharpy. It was well combined on the surface of anionic tumor cell membrane by electrostatic interaction. Thus, the object of this study was to prepare the cationic liposomes capable of forming an ionic complex with the anionic cell membrane. To prepare the cationic liposomes, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) as a cationic lipid material and polyethylenimine (PEI) as a cationic polymer were synthesized. Ionic property on the surface of liposomes was determined by the zeta potential. The adsorption characteristics of plasma protein for liposome in bovine serum were determined by the particle size and turbidity change. To estimate the stability of liposome in buffered solution, the change of particle size was measured at room temperature for seven days. The cationic liposomes were absorbed a large amount of plasma protein in bovine serum because plasma protein having anionic charge was fixed on the surface of cationic liposomes. This result indicate that the modification on the surface of liposomes using cationic polyethylenimine enhances the protein adsorption in bovine serum. Additionaly, cationic liposomes showed good stability in buffered solution for seven days.

Comparison of Butylated Hydroxytoluene, Ascorbic Acid, and Clove Extract as Antioxidants in Fresh Beef Patties at Refrigerated Storage

  • Zahid, Md. Ashrafuzzaman;Seo, Jin-Kyu;Parvin, Rashida;Ko, Jonghyun;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.768-779
    • /
    • 2019
  • This study was performed to assess the comparison of the effects amongst butylated hydroxytoluene (BHT), clove extract (CE), and ascorbic acid (AA) as antioxidants on the oxidative stability and color values in fresh beef patties. The adding of BHT, AA, and CE to patties significantly restrained lipid oxidation, lowered hue angle as color value, and expanded redness and chroma values of fresh beef patties in comparison to the control (p<0.05). BHT and AA significantly led to impede the protein oxidation of patties by lowering carbonyl content (p<0.05). CE had no negative effect on protein oxidation. The antioxidant effects of BHT, AA, and CE were obviously manifested. Nonetheless, BHT, AA, and CE appeared to have insignificant difference of each other for lowering the protein oxidation at the end of storage. BHT and CE represented lowered lipid oxidation in comparison to AA. The antioxidant effects of BHT, AA, and CE on lipid oxidation were more marked than the effects on protein oxidation. Furthermore, CE as a natural antioxidant evinced the efficiency in oxidative stability and color stability in fresh beef patties. The study implied that CE could substitute the use of BHT and AA when making beef patties during storage.

CHIP and BAP1 Act in Concert to Regulate INO80 Ubiquitination and Stability for DNA Replication

  • Seo, Hye-Ran;Jeong, Daun;Lee, Sunmi;Lee, Han-Sae;Lee, Shin-Ai;Kang, Sang Won;Kwon, Jongbum
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.101-115
    • /
    • 2021
  • The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.

Molecular insights into the role of genetic determinants of congenital hypothyroidism

  • Kollati, Yedukondalu;Akella, Radha Rama Devi;Naushad, Shaik Mohammad;Patel, Rajesh K.;Reddy, G. Bhanuprakash;Dirisala, Vijaya R.
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.29.1-29.10
    • /
    • 2021
  • In our previous studies, we have demonstrated the association of certain variants of the thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (TG) genes with congenital hypothyroidism. Herein, we explored the mechanistic basis for this association using different in silico tools. The mRNA 3'-untranslated region (3'-UTR) plays key roles in gene expression at the post-transcriptional level. In TSHR variants (rs2268477, rs7144481, and rs17630128), the binding affinity of microRNAs (miRs) (hsa-miR-154-5p, hsa-miR-376a-2-5p, hsa-miR-3935, hsa-miR-4280, and hsa-miR-6858-3p) to the 3'-UTR is disrupted, affecting post-transcriptional gene regulation. TPO and TG are the two key proteins necessary for the biosynthesis of thyroid hormones in the presence of iodide and H2O2. Reduced stability of these proteins leads to aberrant biosynthesis of thyroid hormones. Compared to the wild-type TPO protein, the p.S398T variant was found to exhibit less stability and significant rearrangements of intra-atomic bonds affecting the stoichiometry and substrate binding (binding energies, ΔG of wild-type vs. mutant: -15 vs. -13.8 kcal/mol; and dissociation constant, Kd of wild-type vs. mutant: 7.2E-12 vs. 7.0E-11 M). The missense mutations p.G653D and p.R1999W on the TG protein showed altered ΔG(0.24 kcal/mol and 0.79 kcal/mol, respectively). In conclusion, an in silico analysis of TSHR genetic variants in the 3'-UTR showed that they alter the binding affinities of different miRs. The TPO protein structure and mutant protein complex (p.S398T) are less stable, with potentially deleterious effects. A structural and energy analysis showed that TG mutations (p.G653D and p.R1999W) reduce the stability of the TG protein and affect its structure-functional relationship.

Storage Stability of Freeze Dried Loach for Instant Choo-o-tang (즉석 추어탕을 냉동 건조미꾸라지의 저장성)

  • 류홍수;문숙임;이수정;문갑순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.153-160
    • /
    • 1999
  • Storage stability of boiled and freeze dried loach and antioxidative effect of Zanthoxylum schinifolium were studied to confirm the possibility in development of instant choo o tang(Korean traditional loach soup). Packaging and storage temperature did not cause a measurable change in in vitro protein digestibility and trypsin indigestible substrate within 45 days of storage but remarkable quality changes were occurred in all samples stored after 60 days. Vacuum packaging and low temperature storage(4 oC) had some effect in retarding protein quality deterioration due to delaying polyunsaturated fatty acid oxidation. Maximum peroxide value and TBA value were reached in 15 days, and there were a slow(TBA value) and rapid reduction(POV) after peaks were reached. In contrast, increasing brown pigment development and fluorescence intensity continued until 90 days of storage. Treatment of ethanolic extracts from Zanthoxylum schinifolium prior to freeze drying could protect against lipid oxidation of freeze dried loach products.

  • PDF

Coiled-Coil Domain-Containing Protein 98 (CCDC98) Regulates Cyclin B1 Expression by Affecting WTAP Protein Stability (WTAP 단백질의 안정성을 통한 CCDC98 단백질의 cyclin B1 발현 조절)

  • Oh, Yun-Jung;Lee, Eun-Hee;Lee, Il-Kyu;Kim, Kyung-Soo;Kim, Hong-Tae
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1067-1075
    • /
    • 2011
  • Coiled-coil domain-containing protein 98 (CCDC98) plays a role in G2/M DNA damage checkpoint pathways by recruiting breast cancer 1 (BRCA1)-A complex to the DNA-damaged sites. However, the molecular mechanism of CCDC98 on the DNA damage-induced G2/M checkpoint pathways is unclear. In this study, we identifed Wilms tumor 1-associating protein (WTAP) as a novel CCDC98-binding protein, using tandem affinity purification. We confirmed the association between CCDC98 and WTAP using in vivo and in vitro binding assays. We demonstrated that CCDC98 regulates cyclin B1 expression by affecting WTAP protein stability. Based on these results, we suggest that CCDC98 may act as a novel cell cycle regulator by regulating the expression level of cyclin B1.

Effect of Protease on the Extraction and Properties of the Protein from Silkworm pupa (Protease 처리가 누에번데기 단백질 추출 및 기능성에 미치는 영향)

  • Kwon, Hyo-Jung;Lee, Kyoung-Hwan;Kim, Jeung-Hoan;Chun, Sung-Sook;Cho, Young-Je;Cha, Won-Seup
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.304-308
    • /
    • 2006
  • To extract insoluble proteins from silkworm pupa meal, the meal was treated with pretense produced by Bacillus sp. JH-209. The extraction of insoluble silkworm pupa protein was enhanced at alkaline pHs ranged from 7 to 11 by treatment with the protease. The optimum extraction temperature was $40^{\circ}C$ for in soluble protein treated with pretense. The optimum protease treatment time for extraction of protein was 11 hrs and optimum amount of enzyme treated for extraction of protein was 60 Unit, respectively. The treatment of enzyme extracted more protein than ordinary extraction method without pretense. The foaming capacity, foaming stability, emulsion capacity, and emulsion stability of silkworm pupa meal protein extracted by the treatment of the enzymes increased at all pH ranges. Further more oil absorption as well as water absorption capacities of the protein extracted by the treatment of the enzymes were also increased.

A Study on the Functional Properties of Camellia(Camellia japonica L.) Seed Protein Isolate (분리 동백단백의 기능적 특성)

  • 강성구
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • This study was carried out to investigate the functional properties such as nitrogen solubility, emulsifying property , foaming capapcity , water and oil absorption of Camellia (Camellia japonica .) seed protein isolate in condition of distilled water and 0.5M NaCl solution at pH 2.0∼10.0. Nitrogen solubility of Camellia protein isolate in distilled water showed the minimum value at pH 4.0 and increased at pH lower or higher than the isoelectric point(pH 4.0). It was 90.0 %at pH 10.0 Nitrogen solubility of 0.5M NaCl solution showed a similar pattern with that of distrille dwater but was higher than that of distilled water except pH 2.0 and pH 10.0. Emulsifying activity of Camellia seed protein islate showed the minimum value at pH 4.0, but was higher at ether value of pH. Emulsifying stability of protein isolate was stable by heat treatment for 30min, at 80℃ and increased in 0.5M NaCl solution more than that of distille dwater. Foaming capacity of Camellia seed protein isolate in distill3ed water showed the minimum value near the isoelectric point, While it changed little at other values of pH. Foaming stability slowly decreased as, but didn't make a significant difference as time was delayed . Oil absorption was 1.4ml per a sample of 1g and water absorption was 0.9ml per a sample of 1g. The former was higher than the latter . The content of total amino acid of Camellia protein isolate was 43.67% and the major total amino acid of Camellia protein isolate was 43.67% and the major total amino acid was in the order of glutamic acid , arginine, aspartic acid, and leucine.

  • PDF