DOI QR코드

DOI QR Code

Molecular insights into the role of genetic determinants of congenital hypothyroidism

  • Kollati, Yedukondalu (Department of Biotechnology, Vignan's University) ;
  • Akella, Radha Rama Devi (Department of Genetics, Rainbow Children's Hospital) ;
  • Naushad, Shaik Mohammad (Department of Biochemical Genetics and Pharmacogenomics, Sandor Speciality Diagnostics Pvt. Ltd) ;
  • Patel, Rajesh K. (Department of Genetics, Genetic Group of Gujarat Diagnostic Centre) ;
  • Reddy, G. Bhanuprakash (Biochemistry Division, National Institute of Nutrition) ;
  • Dirisala, Vijaya R. (Department of Biotechnology, Vignan's University)
  • 투고 : 2021.06.14
  • 심사 : 2021.07.22
  • 발행 : 2021.09.30

초록

In our previous studies, we have demonstrated the association of certain variants of the thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (TG) genes with congenital hypothyroidism. Herein, we explored the mechanistic basis for this association using different in silico tools. The mRNA 3'-untranslated region (3'-UTR) plays key roles in gene expression at the post-transcriptional level. In TSHR variants (rs2268477, rs7144481, and rs17630128), the binding affinity of microRNAs (miRs) (hsa-miR-154-5p, hsa-miR-376a-2-5p, hsa-miR-3935, hsa-miR-4280, and hsa-miR-6858-3p) to the 3'-UTR is disrupted, affecting post-transcriptional gene regulation. TPO and TG are the two key proteins necessary for the biosynthesis of thyroid hormones in the presence of iodide and H2O2. Reduced stability of these proteins leads to aberrant biosynthesis of thyroid hormones. Compared to the wild-type TPO protein, the p.S398T variant was found to exhibit less stability and significant rearrangements of intra-atomic bonds affecting the stoichiometry and substrate binding (binding energies, ΔG of wild-type vs. mutant: -15 vs. -13.8 kcal/mol; and dissociation constant, Kd of wild-type vs. mutant: 7.2E-12 vs. 7.0E-11 M). The missense mutations p.G653D and p.R1999W on the TG protein showed altered ΔG(0.24 kcal/mol and 0.79 kcal/mol, respectively). In conclusion, an in silico analysis of TSHR genetic variants in the 3'-UTR showed that they alter the binding affinities of different miRs. The TPO protein structure and mutant protein complex (p.S398T) are less stable, with potentially deleterious effects. A structural and energy analysis showed that TG mutations (p.G653D and p.R1999W) reduce the stability of the TG protein and affect its structure-functional relationship.

키워드

과제정보

This work was partly supported by a grant from DST-SERB, Government of India (ECR/2016/00304). The authors specially thank Dr. Pasumarthi NBS Srinivas, Dr. Hari Krishna K, Dr. Bajarang Vasant Kumbhar, Anusha Puvvada, Uma Maheshwar P for their support during the investigation.

참고문헌

  1. Agrawal P, Philip R, Saran S, Gutch M, Razi MS, Agroiya P, et al. Congenital hypothyroidism. Indian J Endocrinol Metab 2015;19:221-227. https://doi.org/10.4103/2230-8210.131748
  2. Ahmad N, Irfan A, Al Saedi SA. Congenital hypothyroidism: screening, diagnosis, management, and outcome. J Clin Neonatol 2017;6:64-70. https://doi.org/10.4103/jcn.JCN_5_17
  3. ICMR Task Force on Inherited Metabolic Disorders. Newborn screening for congenital hypothyroidism and congenital adrenal hyperplasia. Indian J Pediatr 2018;85:935-940. https://doi.org/10.1007/s12098-018-2645-9
  4. Kollati Y, Ambati RR, Reddy PN, Kumar NS, Patel RK, Dirisala VR. Congenital hypothyroidism: facts, facets and therapy. Curr Pharm Des 2017;23:2308-2313.
  5. Ramesh BG, Bhargav PR, Rajesh BG, Devi NV, Vijayaraghavan R, Varma BA. Genotype-phenotype correlations of dyshormonogenetic goiter in children and adolescents from South India. Indian J Endocrinol Metab 2016;20:816-824. https://doi.org/10.4103/2230-8210.192923
  6. Kota SK, Modi K, Kumaresan K. Elevated thyroid stimulating hormone in a neonate: drug induced or disease? Indian J Endocrinol Metab 2011;15(Suppl 2):S138-S140.
  7. Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Kang IN, et al. Variable clinical phenotypes in a family with homozygous c.1159G > A mutation in the thyroid peroxidase gene. Horm Res Paediatr 2014;81:356-360. https://doi.org/10.1159/000359922
  8. Sironi M, Menozzi G, Riva L, Cagliani R, Comi GP, Bresolin N, et al. Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res 2004;32:1783-1791. https://doi.org/10.1093/nar/gkh341
  9. Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol 2018;60:25. https://doi.org/10.1186/s40781-018-0183-7
  10. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 2016;7:68-74. https://doi.org/10.4103/2229-3485.179431
  11. Popp NA, Yu D, Green B, Chew EY, Ning B, Chan CC, et al. Functional single nucleotide polymorphism in IL-17A 3' untranslated region is targeted by miR-4480 in vitro and may be associated with age-related macular degeneration. Environ Mol Mutagen 2016;57:58-64. https://doi.org/10.1002/em.21982
  12. Kollati Y, Akella RR, Naushad SM, Borkar D, Thalla M, Nagalingam S, et al. Newborn screening and single nucleotide variation profiling of TSHR, TPO, TG and DUOX2 candidate genes for congenital hypothyroidism. Mol Biol Rep 2020;47:7467-7475. https://doi.org/10.1007/s11033-020-05803-x
  13. Bhattacharya A, Ziebarth JD, Cui Y. PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 2014;42:D86-D91. https://doi.org/10.1093/nar/gkt1028
  14. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 2019;20:18. https://doi.org/10.1186/s13059-019-1629-z
  15. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005. https://doi.org/10.7554/elife.05005
  16. Kanoria S, Rennie W, Liu C, Carmack CS, Lu J, Ding Y. STarMir tools for prediction of microRNA binding sites. Methods Mol Biol 2016;1490:73-82. https://doi.org/10.1007/978-1-4939-6433-8_6
  17. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015;12:7-8.
  18. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera: a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612. https://doi.org/10.1002/jcc.20084
  19. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The ClusPro web server for protein-protein docking. Nat Protoc 2017;12:255-278. https://doi.org/10.1038/nprot.2016.169
  20. Tina KG, Bhadra R, Srinivasan N. PIC: protein interactions calculator. Nucleic Acids Res 2007;35:W473-W476. https://doi.org/10.1093/nar/gkm423
  21. Vangone A, Bonvin AM. Contacts-based prediction of binding affinity in protein-protein complexes. Elife 2015;4:e07454. https://doi.org/10.7554/elife.07454
  22. Pahari S, Li G, Murthy AK, Liang S, Fragoza R, Yu H, et al. SAAMBE-3D: Predicting Effect of Mutations on Protein-Protein Interactions. Int J Mol Sci 2020;21:2563. https://doi.org/10.3390/ijms21072563
  23. Coscia F, Taler-Vercic A, Chang VT, Sinn L, O'Reilly FJ, Izore T, et al. The structure of human thyroglobulin. Nature 2020;578:627-630. https://doi.org/10.1038/s41586-020-1995-4
  24. Delano WL. The PyMOL molecular graphics system, version 1.8. New York: Schrodinger, 2002.
  25. Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 2018;46:W350-W355. https://doi.org/10.1093/nar/gky300
  26. Kollati Y, Akella RR, Naushad SM, Thalla M, Reddy GB, Dirisala VR. The rs1991517 polymorphism is a genetic risk factor for congenital hypothyroidism. 3 Biotech 2020;10:285.
  27. Marini F, Luzi E, Brandi ML. MicroRNA role in thyroid cancer development. J Thyroid Res 2011;2011:407123.
  28. Xie F, Li L, Luo Y, Chen R, Mei J. Long non-coding RNA LINC00488 facilitates thyroid cancer cell progression through miR-376a-3p/PON2. Biosci Rep 2021;41:BSR20201603. https://doi.org/10.1042/BSR20201603
  29. Balzan S, Del Carratore R, Nicolini G, Beffy P, Lubrano V, Forini F, et al. Proangiogenic effect of TSH in human microvascular endothelial cells through its membrane receptor. J Clin Endocrinol Metab 2012;97:1763-1770. https://doi.org/10.1210/jc.2011-2146
  30. Ahmetov I, Kulemin N, Popov D, Naumov V, Akimov E, Bravy Y, et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport 2015;32:3-9. https://doi.org/10.5604/20831862.1124568
  31. Campo C, Kohler A, Figlioli G, Elisei R, Romei C, Cipollini M, et al. Inherited variants in genes somatically mutated in thyroid cancer. PLoS One 2017;12:e0174995. https://doi.org/10.1371/journal.pone.0174995
  32. Targovnik HM, Citterio CE, Rivolta CM. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract Res Clin Endocrinol Metab 2017;31:195-212. https://doi.org/10.1016/j.beem.2017.03.006
  33. Deladoey J, Pfarr N, Vuissoz JM, Parma J, Vassart G, Biesterfeld S, et al. Pseudodominant inheritance of goitrous congenital hypothyroidism caused by TPO mutations: molecular and in silico studies. J Clin Endocrinol Metab 2008;93:627-633. https://doi.org/10.1210/jc.2007-2276
  34. Turkkahraman D, Alper OM, Pehlivanoglu S, Aydin F, Yildiz A, Luleci G, et al. Analysis of TPO gene in Turkish children with iodide organification defect: identification of a novel mutation. Endocrine 2010;37:124-128. https://doi.org/10.1007/s12020-009-9280-1
  35. Turkkahraman D, Alper OM, Aydin F, Yildiz A, Pehlivanoglu S, Luleci G, et al. Final diagnosis in children with subclinical hypothyroidism and mutation analysis of the thyroid peroxidase gene (TPO). J Pediatr Endocrinol Metab 2009;22:845-851. https://doi.org/10.1515/jpem.2009.22.9.845
  36. Rivolta CM, Moya CM, Esperante SA, Gutnisky VJ, Varela V, Targovnik HM. The thyroid as a model for molecular mechanisms in genetic diseases. Medicina (B Aires) 2005;65:257-267.
  37. Guria S, Bankura B, Balmiki N, Pattanayak AK, Das TK, Sinha A, et al. Functional analysis of thyroid peroxidase gene mutations detected in patients with thyroid dyshormonogenesis. Int J Endocrinol 2014;2014:390121. https://doi.org/10.1155/2014/390121
  38. Begum MN, Islam MT, Hossain SR, Bhuyan GS, Halim MA, Shahriar I, et al. Mutation sectrum in TPO gene of Bangladeshi patients with thyroid dyshormonogenesis and analysis of the effects of different mutations on the structural features and functions of TPO protein through in silico approach. Biomed Res Int 2019;2019:9218903. https://doi.org/10.1155/2019/9218903
  39. Targovnik HM, Citterio CE, Rivolta CM. Thyroglobulin gene mutations in congenital hypothyroidism. Horm Res Paediatr 2011;75:311-321. https://doi.org/10.1159/000324882
  40. Haddad Y, Adam V, Heger Z. Ten quick tips for homology modeling of high-resolution protein 3D structures. PLoS Comput Biol 2020;16:e1007449. https://doi.org/10.1371/journal.pcbi.1007449
  41. Aljouie A, Schatz M, Roshan U. Machine learning based prediction of gliomas with germline mutations obtained from whole exome sequences from TCGA and 1000 Genomes Project. In: The 3rd International Conference on Intelligent Computing in Data Sciences (ICDS), 2019 Oct 28-30, Marrakech, Morocco.
  42. Collins JE, Heward JM, Howson JM, Foxall H, Carr-Smith J, Franklyn JA, et al. Common allelic variants of exons 10, 12, and 33 of the thyroglobulin gene are not associated with autoimmune thyroid disease in the United Kingdom. J Clin Endocrinol Metab 2004;89:6336-6339. https://doi.org/10.1210/jc.2004-1336
  43. Pyun JA, Kim S, Cha DH, Ko JJ, Kwack K. Epistasis between the HSD17B4 and TG polymorphisms is associated with premature ovarian failure. Fertil Steril 2012;97:968-973. https://doi.org/10.1016/j.fertnstert.2011.12.044
  44. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A 2003;100:15119-15124. https://doi.org/10.1073/pnas.2434175100
  45. Zhang ML, Zhang DM, Wang CE, Chen XL, Liu FZ, Yang JX. Association between thyroglobulin polymorphisms and autoimmune thyroid disease: a systematic review and meta-analysis of case-control studies. Genes Immun 2019;20:484-492. https://doi.org/10.1038/s41435-018-0042-z
  46. Raef H, Al-Rijjal R, Al-Shehri S, Zou M, Al-Mana H, Baitei EY, et al. Biallelic p.R2223H mutation in the thyroglobulin gene causes thyroglobulin retention and severe hypothyroidism with subsequent development of thyroid carcinoma. J Clin Endocrinol Metab 2010;95:1000-1006. https://doi.org/10.1210/jc.2009-1823
  47. Hu X, Chen R, Fu C, Fan X, Wang J, Qian J, et al. Thyroglobulin gene mutations in Chinese patients with congenital hypothyroidism. Mol Cell Endocrinol 2016;423:60-66. https://doi.org/10.1016/j.mce.2016.01.007
  48. Santos-Silva R, Rosario M, Grangeia A, Costa C, Castro-Correia C, Alonso I, et al. Genetic analyses in a cohort of Portuguese pediatric patients with congenital hypothyroidism. J Pediatr Endocrinol Metab 2019;32:1265-1273. https://doi.org/10.1515/jpem-2019-0047
  49. Tanaka T, Aoyama K, Suzuki A, Saitoh S, Mizuno H. Clinical and genetic investigation of 136 Japanese patients with congenital hypothyroidism. J Pediatr Endocrinol Metab 2020;33:691-701. https://doi.org/10.1515/jpem-2019-0433