• 제목/요약/키워드: protein microarray

검색결과 347건 처리시간 0.022초

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

바이오 디지털 콘텐츠를 이용한 독성의 분석 (Analysis of toxicity using bio-digital contents)

  • 강진석
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권1호
    • /
    • pp.99-104
    • /
    • 2010
  • 화학물질은 생체에 들어오면 여러 가지 독성반응을 나타내는데, 독성반응에 따른 유전자 발현을 분석하기 위해 바이오 칩 등을 이용한 신기술이 확산되면서 바이오 디지털 콘텐츠가 다량으로 생성되고 있다. 이 콘텐츠는 그 자체로는 의미가 적고 컴퓨터를 이용한 분석과 보정과정을 거쳐 생물학적으로 의미 있는 값들을 선별하여야 한다. 이런 콘텐츠에는 유전자들의 발현 양상 측정을 목적으로 하는 유전체학(genomics), 유전자의 발현 양상을 측정하는 전사체학(transcriptomics), 단백질의 발현을 측정하는 단백체학(proteomics), 대사체의 발현을 측정하는 대사체학(metabolomics) 등이 있으며, 이를 통칭하여 오믹스(omics)라고 부른다. 오믹스 기술을 독성을 연구하는 분야에 접목한 것이 독성유전체학(toxicogenomics)이며, 이에 대한 콘텐츠를 분석함으로써 독성을 예측하고 독성기전을 규명할 수 있다. 독성분석에 있어서 초기 단계의 분석은 향후 만성독성의 예측에 있어서 중요한 부분을 차지하고 있다. 바이오 디지털 콘텐츠를 이용하여 독성을 예측함에 있어 기존의 방법보다 더 빠르고 정확하게 예측하기 위해서는 많은 정보에 대한 분석기술의 진보가 필요하다. 또, 바이오 디지털 콘텐츠를 이용한 독성예측에 있어서 전체세포보다는 생물학적 현상을 일으키는 특이세포에서 이런 정보를 얻는 것이 중요하다고 생각된다. 또, 향후 바이오 디지털 콘텐츠 분석은 전략적 실험설계에 의한 데이터가 분석되고 축적되어야 하고, 분석알고리즘을 통한 네트워크 분석이 이루어져야 하며, 통합적 데이터 구축을 통해 이루어져야 할 것으로 생각된다.

A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice

  • Minh-Thu, Pham-Thi;Kim, Joung Sug;Chae, Songhwa;Jun, Kyong Mi;Lee, Gang-Seob;Kim, Dong-Eun;Cheong, Jong-Joo;Song, Sang Ik;Nahm, Baek Hie;Kim, Yeon-Ki
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.781-798
    • /
    • 2018
  • Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.

Prediction of Exposure to 1763MHz Radiofrequency Radiation Using Support Vector Machine Algorithm in Jurkat Cell Model System

  • Huang Tai-Qin;Lee Min-Su;Bae Young-Joo;Park Hyun-Seok;Park Woong-Yang;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.71-76
    • /
    • 2006
  • We have investigated biological responses to radiofrequency (RF) radiation in in vitro and in vivo models. By measuring the levels of heat shock proteins as well as the activation of mitogen activated protein kinases (MAPKs), we could not detect any differences upon RF exposure. In this study, we used more sensitive method to find the molecular responses to RF radiation. Jurkat, human T-Iymphocyte cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 10 W/kg for one hour and harvested immediately (R0) or after five hours (R5). From the profiles of 30,000 genes, we selected 68 differentially expressed genes among sham (S), R0 and R5 groups using a random-variance F-test. Especially 45 annotated genes were related to metabolism, apoptosis or transcription regulation. Based on support vector machine (SVM) algorithm, we designed prediction model using 68 genes to discriminate three groups. Our prediction model could predict the target class of 19 among 20 examples exactly (95% accuracy). From these data, we could select the 68 biomarkers to predict the RF radiation exposure with high accuracy, which might need to be validated in in vivo models.

Identification of Causal and/or Rare Genetic Variants for Complex Traits by Targeted Resequencing in Population-based Cohorts

  • Kim, Yun-Kyoung;Hong, Chang-Bum;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • 제8권3호
    • /
    • pp.131-137
    • /
    • 2010
  • Genome-wide association studies (GWASs) have greatly contributed to the identification of common variants responsible for numerous complex traits. There are, however, unavoidable limitations in detecting causal and/or rare variants for traits in this approach, which depends on an LD-based tagging SNP microarray chip. In an effort to detect potential casual and/or rare variants for complex traits, such as type 2 diabetes (T2D) and triglycerides (TGs), we conducted a targeted resequencing of loci identified by the Korea Association REsource (KARE) GWAS. The target regions for resequencing comprised whole exons, exon-intron boundaries, and regulatory regions of genes that appeared within 1 Mb of the GWA signal boundary. From 124 individuals selected in population-based cohorts, a total of 0.7 Mb target regions were captured by the NimbleGen sequence capture 385K array. Subsequent sequencing, carried out by the Roche 454 Genome Sequencer FLX, generated about 110,000 sequence reads per individual. Mapping of sequence reads to the human reference genome was performed using the SSAHA2 program. An average of 62.2% of total reads was mapped to targets with an average 22X-fold coverage. A total of 5,983 SNPs (average 846 SNPs per individual) were called and annotated by GATK software, with 96.5% accuracy that was estimated by comparison with Affymetrix 5.0 genotyped data in identical individuals. About 51% of total SNPs were singletons that can be considered possible rare variants in the population. Among SNPs that appeared in exons, which occupies about 20% of total SNPs, 304 nonsynonymous singletons were tested with Polyphen to predict the protein damage caused by mutation. In total, we were able to detect 9 and 6 potentially functional rare SNPs for T2D and triglycerides, respectively, evoking a further step of replication genotyping in independent populations to prove their bona fide relevance to traits.

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

  • Lee, Eun-Ju;Park, Kwan-Sik;Jeon, In-Sook;Cho, Jae-Woon;Lee, Sang-Jeon;Choy, Hyun E.;Song, Ki-Duk;Lee, Hak-Kyo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.566-572
    • /
    • 2016
  • Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

ST5 Positively Regulates Osteoclastogenesis via Src/Syk/Calcium Signaling Pathways

  • Kim, Min Kyung;Kim, Bongjun;Kwon, Jun-Oh;Song, Min-Kyoung;Jung, Suhan;Lee, Zang Hee;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.810-819
    • /
    • 2019
  • For physiological or pathological understanding of bone disease caused by abnormal behavior of osteoclasts (OCs), functional studies of molecules that regulate the generation and action of OCs are required. In a microarray approach, we found the suppression of tumorigenicity 5 (ST5) gene is upregulated by receptor activator of nuclear $factor-{\kappa}B$ ligand (RANKL), the OC differentiation factor. Although the roles of ST5 in cancer and ${\beta}-cells$ have been reported, the function of ST5 in bone cells has not yet been investigated. Knockdown of ST5 by siRNA reduced OC differentiation from primary precursors. Moreover, ST5 downregulation decreased expression of NFATc1, a key transcription factor for osteoclastogenesis. In contrast, overexpression of ST5 resulted in the opposite phenotype of ST5 knockdown. In immunocytochemistry experiments, the ST5 protein is colocalized with Src in RANKL-committed cells. In addition, ST5 enhanced activation of Src and Syk, a Src substrate, in response to RANKL. ST5 reduction caused a decrease in RANKL-evoked calcium oscillation and inhibited translocation of NFATc1 into the nucleus. Taken together, these findings provide the first evidence of ST5 involvement in positive regulation of osteoclastogenesis via Src/Syk/calcium signaling.

Sulfuretin Prevents Obesity and Metabolic Diseases in Diet Induced Obese Mice

  • Kim, Suji;Song, No-Joon;Chang, Seo-Hyuk;Bahn, Gahee;Choi, Yuri;Rhee, Dong- Kwon;Yun, Ui Jeong;Choi, Jinhee;Lee, Jeon;Yoo, Jae Hyuk;Shin, Donghan;Park, Ki-Moon;Kang, Hee;Lee, Sukchan;Ku, Jin-Mo;Cho, Yoon Shin;Park, Kye Won
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.107-116
    • /
    • 2019
  • The global obesity epidemic and associated metabolic diseases require alternative biological targets for new therapeutic strategies. In this study, we show that a phytochemical sulfuretin suppressed adipocyte differentiation of preadipocytes and administration of sulfuretin to high fat diet-fed obese mice prevented obesity and increased insulin sensitivity. These effects were associated with a suppressed expression of inflammatory markers, induced expression of adiponectin, and increased levels of phosphorylated ERK and AKT. To elucidate the molecular mechanism of sulfuretin in adipocytes, we performed microarray analysis and identified activating transcription factor 3 (Atf3) as a sulfuretin-responsive gene. Sulfuretin elevated Atf3 mRNA and protein levels in white adipose tissue and adipocytes. Consistently, deficiency of Atf3 promoted lipid accumulation and the expression of adipocyte markers. Sulfuretin's but not resveratrol's anti-adipogenic effects were diminished in Atf3 deficient cells, indicating that Atf3 is an essential factor in the effects of sulfuretin. These results highlight the usefulness of sulfuretin as a new anti-obesity intervention for the prevention of obesity and its associated metabolic diseases.

Heat Shock Factor 1 Predicts Poor Prognosis of Gastric Cancer

  • Kim, Seok-Jun;Lee, Seok-Cheol;Kang, Hyun-Gu;Gim, Jungsoo;Lee, Kyung-Hwa;Lee, Seung-Hyun;Chun, Kyung-Hee
    • Yonsei Medical Journal
    • /
    • 제59권9호
    • /
    • pp.1041-1048
    • /
    • 2018
  • Purpose: Heat shock factor 1 (HSF1) is a key regulator of the heat shock response and plays an important role in various cancers. However, the role of HSF1 in gastric cancer is still unknown. The present study evaluated the function of HSF1 and related mechanisms in gastric cancer. Materials and Methods: The expression levels of HSF1 in normal and gastric cancer tissues were compared using cDNA microarray data from the NCBI Gene Expression Omnibus (GEO) dataset. The proliferation of gastric cancer cells was analyzed using the WST assay. Transwell migration and invasion assays were used to evaluate the migration and invasion abilities of gastric cancer cells. Protein levels of HSF1 were analyzed using immunohistochemical staining of tissue microarrays from patients with gastric cancer. Results: HSF1 expression was significantly higher in gastric cancer tissue than in normal tissue. Knockdown of HSF1 reduced the proliferation, migration, and invasion of gastric cancer cells, while HSF1 overexpression promoted proliferation, migration, and invasion of gastric cancer cells. Furthermore, HSF1 promoted the proliferation of gastric cancer cells in vivo. In Kaplan-Meier analysis, high levels of HSF1 were associated with poor prognosis for patients with gastric cancer (p=0.028). Conclusion: HSF1 may be closely associated with the proliferation and motility of gastric cancer cells and poor prognosis of patients with gastric cancer. Accordingly, HSF1 could serve as a prognostic marker for gastric cancer.

Prognostic role of EGR1 in breast cancer: a systematic review

  • Saha, Subbroto Kumar;Islam, S.M. Riazul;Saha, Tripti;Nishat, Afsana;Biswas, Polash Kumar;Gil, Minchan;Nkenyereye, Lewis;El-Sappagh, Shaker;Islam, Md. Saiful;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제54권10호
    • /
    • pp.497-504
    • /
    • 2021
  • EGR1 (early growth response 1) is dysregulated in many cancers and exhibits both tumor suppressor and promoter activities, making it an appealing target for cancer therapy. Here, we used a systematic multi-omics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC). EGR1 expression, its promoter methylation, and protein expression pattern were assessed using various publicly available tools. COSMIC-based somatic mutations and cBioPortal-based copy number alterations were analyzed, and the prognostic roles of EGR1 in BC were determined using Prognoscan and Kaplan-Meier Plotter. We also used bc-GenEx-Miner to investigate the EGR1 co-expression profile. EGR1 was more often downregulated in BC tissues than in normal breast tissue, and its knockdown was positively correlated with poor survival. Low EGR1 expression levels were also associated with increased risk of ER+, PR+, and HER2- BCs. High positive correlations were observed among EGR1, DUSP1, FOS, FOSB, CYR61, and JUN mRNA expression in BC tissue. This systematic review suggested that EGR1 expression may serve as a prognostic marker for BC patients and that clinicopathological parameters influence its prognostic utility. In addition to EGR1, DUSP1, FOS, FOSB, CYR61, and JUN can jointly be considered prognostic indicators for BC.