• 제목/요약/키워드: protein function evidence

검색결과 131건 처리시간 0.022초

Mouse 갑상선에서 thyrotropin에 의한 thyroxine 유리에 미치는 methoxamine의 억제효과에 대한 protein kinase C의 관련 (The involvement of protein kinase C in the inhibitory effect of methoxamine on the thyrotropin-induced release of thyroxine in mouse thyroid)

  • 김세곤;김진상
    • 대한수의학회지
    • /
    • 제38권3호
    • /
    • pp.508-517
    • /
    • 1998
  • There is evidence that the sympathetic nervous system exerts a control on thyroid function via an adrenergic innervation of thyroid cells. Although it is clear that the inhibitory effects of catecholamines result from an activation of ${\alpha}_1$-adrenoceptors, the mechanisms involved in ${\alpha}_1$-stimulation are not fully understood. The effects of methoxamine and protein kinase C (PKC) activator on the release of thyroxine ($T_4$) from mouse thyroid were studied to clarify the role of PKC in the regulation of $T_4$ release in vitro. The glands were incubated in the medium, samples of the medium were assayed for $T_4$ by EIA kits. Methoxamine inhibited the TSH-stimulated $T_4$ release. This inhibition was reversed by prazosin, an ${\alpha}_1$-adrenergic antagonist. Futhermore, the inhibitory effect of methoxamine on the $T_4$ release stimulated by TSH was prevented by chloroethylclonidine, an ${\alpha}_{1b}$-adrenoceptor antagonist, but not by WB4101, an ${\alpha}_{1a}$-adrenoceptor antagonist. Also methoxamine inhibited the forskolin-, cAMP- or IBMX-stimulated $T_4$ release. These inhibition were reversed by PKC inhibitors, such as staurosporine and $H_7$. PMA, a PKC activator, completely inhibited the TSH-stimulated $T_4$ release, and its inhibition was reversed by staurosporine and $H_7$, but not by chelerythrine. R59022 (a diacylglycerol kinase inhibitor), like methoxamine, also inhibited the TSH-stimulated $T_4$ release, and its inhibition was also reversed by staurosporine. The present study suggests that methoxamine inhibition of $T_4$ release from mouse thyroid can be induced by activation of the ${\alpha}_{1b}$-adrenoceptors and that it is mediated through the ${\alpha}_1$-adrenoceptor-stimulated PKC formation.

  • PDF

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Controversial Effect of Ethanol Irrespective of Kinases Inhibition on the Agonist-Dependant Vasoconstriction

  • Je, Hyun-Dong;Kim, Hyeong-Dong;Park, June-Hong
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.352-356
    • /
    • 2012
  • The present study was undertaken to determine whether ethanol influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Ethanol significantly inhibited thromboxane $A_2$ mimetic-induced contraction with intact endothelial function, but there was no relaxation on thromboxane $A_2$ mimetic U-46619-induced contraction irrespective of endothelium suggesting that the pathway such as Rho-kinase activation, $Ca^{2+}$ entry or thin filament regulation was not affected. In addition, ethanol didn't decrease thromboxane $A_2$ mimetic-induced increase of phospho-myosin phosphatase targeting subunit protein 1 (pMYPT1) or pERK1/2. Interestingly, ethanol didn't inhibit significantly phorbol ester-induced contraction in denuded muscles suggesting that thin filament regulation is less important on the ethanol-induced regulation in the muscle than endothelial NO synthesis. In conclusion, this study provides the evidence and possible related mechanism concerning the effect of ethanol on the agonist-dependent contraction in rat aortic rings with regard to endothelial function.

치주질환에 의한 심장질환 발생의 관련성 (Association between cardiovascular disease and periodontal disease prevalence)

  • 정미애;김지희
    • 한국융합학회논문지
    • /
    • 제2권4호
    • /
    • pp.47-52
    • /
    • 2011
  • 치주질환(periodontal disease, 잇몸병)은 인구의 50%이상이 이환되는 만성질환이다. 치주질환을 치료하지 않으면, 치아 지지조직의 염증을 악화시켜 치아손실(tooth loss)을 가져온다. 고혈압은 성인의 30%에서 발병하며, 심혈관계통 질환의 이환(morbidity)과 사망(mortality)의 중요한 원인이다. 약 20년 전까지만 해도 두 가지 질환은 깊은 관련이 없어 보였지만, 최근 서로 연관성이 있다는 사실이 밝혀졌다. 심혈관계통의 위험요소에 대한 연구결과, 죽상경화증(atherosclerosis) 합병증 발생은 치주(periodontium) 질환과 관계가 있다. 즉, 뇌졸중(stroke), 관상동맥질환, 말초동맥질환에 대한 위험요소가 치주염이라는 증거가 있다. 이런 인과관계는 두 가지 질환이 서로 공통의 위험요소를 갖는다는 의미이다. C-reactive protein(CRP)은 치주염에서 증가하고, 치주질환 환자는 혈관운동 기능(vasomotor function)이 손상된다는 보고가 있었으며, 치주질환으로 인해 고혈압이 발생한다. 본 연구의 목적은 문헌 고찰을 통해, 치주염과 고혈압을 비롯한 심혈관계통 질환의 인과관계를 밝히고자 한다. 고혈압은 당뇨와 함께 대표적인 생활습관질병이기 때문에, 본 연구를 통해서 적절한 치아관리를 통해 고혈압으로 인한 여러 가지 합병증을 예방하고자 한다.

Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A

  • Ji-Eun Park;Seung Gee Lee;Seung-Jin Lee;Wook-Joon Yu;Jong-Min Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.185-193
    • /
    • 2023
  • Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.

Feeder Free 상태에서 배양된 인간 배아 줄기세포를 이용한 중간엽 줄기세포 분화 및 단백체학을 이용한 골수 유래 중간엽 줄기세포와의 비교 (Derivation of MSC Like-Cell Population from Feeder Free Cultured hESC and Their Proteomic Analysis for Comparison Study with BM-MSC)

  • 박순정;전영주;김주미;선정민;채정일;정형민
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.143-151
    • /
    • 2010
  • Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC-MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.

Preclinical Evidence and Underlying Mechanisms of Polygonum multiflorum and Its Chemical Constituents Against Cognitive Impairments and Alzheimer's Disease

  • Jihyun Cha;Ji Hwan Yun;Ji Hye Choi;Jae Ho Lee;Byung Tae Choi;Hwa Kyoung Shin
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.70-81
    • /
    • 2024
  • Objectives: Cognitive impairments, ranging from mild to severe, adversely affect daily functioning, quality of life, and work capacity. Despite significant efforts in the past decade, more than 200 promising drug candidates have failed in clinical trials. Herbal remedies are gaining interest as potential treatments for dementia due to their long history and safety, making them valuable for drug development. This review aimed to examine the mechanisms behind the effect of Polygonum multiflorum on cognitive function. Methods: This study focused primarily on the effects of Polygonum multiflorum and its chemical constituents on cognitive behavioral outcomes including the Morris water maze, the passive avoidance test, and the Y maze, as well as pathogenic targets of cognitive impairment and Alzheimer's disease (AD) like amyloid deposition, amyloid precursor protein, tau hyperphosphorylation, and cognitive decline. Additionally, a thorough evaluation of the mechanisms behind Polygonum multiflorum's impact on cognitive function was conducted. We reviewed the most recent data from preclinical research done on experimental models, particularly looking at Polygonum multiflorum's effects on cognitive decline and AD. Results: According to recent research, Poligonum multiflorum and its bioactive components, stilbene, and emodin, influence cognitive behavioral results and regulate the pathological target of cognitive impairment and AD. Their mechanisms of action include reducing oxidative and mitochondrial damage, regulating neuroinflammation, halting apoptosis, and promoting increased neurogenesis and synaptogenesis. Conclusion: This review serves as a comprehensive compilation of current experiments on AD and other cognitive impairment models related to the therapeutic effects of Polygonum multiflorum. We believe that these findings can serve as a basis for future clinical trials and have potential applications in the treatment of human neurological disorders.

Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

  • Kim, HyoYoung;Caetano-Anolles, Kelsey;Seo, Minseok;Kwon, Young-jun;Cho, Seoae;Seo, Kangseok;Kim, Heebal
    • Genomics & Informatics
    • /
    • 제13권4호
    • /
    • pp.137-145
    • /
    • 2015
  • Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5), Landrace (n = 13), and Duroc (n = 6). An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc. These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs) related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718) in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively.

The roles of FADD in extrinsic apoptosis and necroptosis

  • Lee, Eun-Woo;Seo, Jin-Ho;Jeong, Man-Hyung;Lee, Sang-Sik;Song, Jae-Whan
    • BMB Reports
    • /
    • 제45권9호
    • /
    • pp.496-508
    • /
    • 2012
  • Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.

Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism

  • Lee, Ho-Jae;Cha, Ji-Young
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.429-436
    • /
    • 2018
  • Fructose in the form of sucrose and high fructose corn syrup is absorbed by the intestinal transporter and mainly metabolized in the small intestine. However, excess intake of fructose overwhelms the absorptive capacity of the small intestine, leading to fructose malabsorption. Carbohydrate response element-binding protein (ChREBP) is a basic helix-loop-helix leucine zipper transcription factor that plays a key role in glycolytic and lipogenic gene expression in response to carbohydrate consumption. While ChREBP was initially identified as a glucose-responsive factor in the liver, recent evidence suggests that ChREBP is essential for fructose-induced lipogenesis and gluconeogenesis in the small intestine as well as in the liver. We recently identified that the loss of ChREBP leads to fructose intolerance via insufficient induction of genes involved in fructose transport and metabolism in the intestine. As fructose consumption is increasing and closely associated with metabolic and gastrointestinal diseases, a comprehensive understanding of cellular fructose sensing and metabolism via ChREBP may uncover new therapeutic opportunities. In this mini review, we briefly summarize recent progress in intestinal fructose metabolism, regulation and function of ChREBP by fructose, and delineate the potential mechanisms by which excessive fructose consumption may lead to irritable bowel syndrome.