• Title/Summary/Keyword: protein function analysis

Search Result 723, Processing Time 0.034 seconds

Detection of Matrix Metalloprotease-9 and Analysis of Protein Patterns in Bovine Vaginal Mucus during Estrus and Pregnancy

  • Kim, Sang-Hwan;Baek, Jun-Seok;Lee, Ho-Jun;Min, Kwan-Sik;Lee, Deuk-Hwan;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.93-100
    • /
    • 2012
  • To investigate the biochemical nature of changes in vaginal physiology during estrus and pregnancy, we examined the cytology and viscosity, and monitored the protein expression profile in vaginal mucus during estrus and pregnancy. The viscosity progressively decreased from estrus to pregnancy. Cell type analysis revealed that white blood cells progressively increased from estrus to pregnancy, while red blood cells progressively decreased during pregnancy. The cornification index (CI) was higher in estrus than in pregnancy. Protein mass spectrumetry identified the presence of ribosome-binding protein 1, GRIP 1 (Glutamate receptor-interacting protein 1)-associated protein 1, DUF729 (Domain of unknown function729) domain-containing protein 1, prolactin precursor, dihydrofolatereductase, and MMP (Matrix metalloprotease)-9 in vaginal mucus. MMP-2 and MMP-9 proteins in the vaginal mucus were active throughout estrus and gestation, as measured by a gelatinase assay, but most abundant in the vaginal mucus on day 0 of estrus. Results from ELISA of MMP-2 and MMP-9 were in accordance with the gelatinase assay. In light of the crucial role of metalloproteinases in extracellular matrix remodeling, the level of MMP-9 in vaginal mucus might be useful as an indicator of estrus and pregnancy to increase the efficiency of reproduction.

Microbead based micro total analysis system for Hepatitis C detection (마이크로비드를 이용한 초소형 C형 간염 검출 시스템의 제작)

  • Sim, Tae-Seok;Lee, Bo-Rahm;Lee, Sang-Myung;Kim, Min-Soo;Lee, Yoon-Sik;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1629-1630
    • /
    • 2006
  • This paper describes a micro total analysis system ($\mu$ TAS) for detecting and digesting the target protein which includes a bead based temperature controllable microchip and computer based controllers for temperature and valve actuation. We firstly combined the temperature control function with a bead based microchip and realized the on-chip sequential reactions using two kinds of beads. The PEG-grafted bead, on which RNA aptamer was immobilized, was used for capturing and releasing the target protein. The target protein can be chosen by the type of RNA aptamer. In this paper, we used the RNA aptamer of HCV replicase. The trypsin coated bead was used for digesting the released protein prior to the matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS). Heat is applied for release of the captured protein binding on the bead, thermal denaturation and trypsin digestion. PDMS microchannel and PDMS micro pneumatic valves were also combined for the small volume liquid handling. The entire procedures for the detection and the digestion of the target protein were successfully carried out on a microchip without any other chemical treatment or off-chip handling using $20\;{\mu}l$ protein mixture within 20 min. We could acquire six matched peaks (7% sequence coverage) of HCV replicase.

  • PDF

A Study of Vision Biomembrane Assembly using Photoreactive Protein Adsorbed Polypyrrole Film

  • Lim, Jeong-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.208-212
    • /
    • 2000
  • A protein based vision biomembrane was fabricated by adsorbing bacteriorhodopsin into electrochemically polymerized polypyrrole film substrate mainly through strong electrostatic interaction. The immobilized bacteriorhodopsin on the polypyrrole film was demonstrated by SEM and SRET. The light signal transducing function from the bacteriorhodopsin which was adsorbed into Polypyrrole film was evaluated by electroretinogram(ERG). A wave form analysis of the electroretinogram indicated that the adsorbed bacteriorhodopsin retained its activity and light signal was obtained from the protein for at least one month.

  • PDF

Identification of Salmonella pullorum Genomic Sequences Using Suppression Subtractive Hybridization

  • Li, Qiuchun;Xu, Yaohui;Jiao, Xinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.898-903
    • /
    • 2009
  • Pullorum disease affecting poultry is caused by Salmonella enterica serovar Pullorum and results in severe economic loss every year, especially in countries with a developing poultry industry. The pathogenesis of S. Pullorum is not yet well defined, as the specific virulence factors still need to be identified. Thus, to isolate specific DNA fragments belonging to S. Pullorum, this study used suppression subtractive hybridization. As such, the genome of the S. Pullorum C79-13 strain was subtracted from the genome of Salmonella enterica serovar Gallinarum 9 and Salmonella enterica serovar Enteritidis CMCC(B) 50041, respectively, resulting in the identification of 20 subtracted fragments. A sequence homology analysis then revealed three types of fragment: phage sequences, plasmid sequences, and sequences with an unknown function. As a result, several important virulence-related genes encoding the IpaJ protein, colicin Y, tailspike protein, excisionase, and Rhs protein were identified that may play a role in the pathogenesis of S. Pullorum.

Effects of Dietary Calcium, Protein, and Phosphorus Intakes on Bone Mineral Density in Korean Premenopausal Women (우리나라 폐경전 여성에서 칼슘, 단백질, 인의 섭취상태가 골밀도에 미치는 영향)

  • 오재준
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.59-69
    • /
    • 1996
  • Effects of dietary calcium(Ca), protein, and phosphorus(P) intake on bone mineral density (BMD) were investigated in 129 Korean premenopausal women(age 31-54 years) without diagnosed disease. BMD was measured at the spine(vertebrae L2-4) and femur(neck, Ward's triangle and trochanter). By stepwise multiple regression analysis it was shown that protein, Ca, and P intakes affected most significantly on BMD at the vertebrae L2-4, protein and P intakes affected most significantly on BMD at the femoral neck and Ward's triangle, and body mass index(BMI) affected most significantly on BMD at the trochanteric region. When ate-matched BMD % at the vertebrae L2-4 and all femoral sites was grouped by three levels(<90%, 90-99%, >=100%), only at the vertebrae L2-4>=100% and 90-99% groups had higher Ca intakes than <90% groups. When Ca, protein and P intakes of the recommended level for Korean(RDA) were grouped by three levels (Ca or P ; <=650mg/d, 650-750mg/d, >=750mg/d, Protein ; <=55g/d, 55-60g/d, >=65g/d), only at the vertebrae L2-4>55g/d of protein intake had higher age-matched BMD % than <=55g/d intake, >=750mg/d of Ca and P intakes, age-matched BMD % than <=650mg/d. In RDA range of Ca, protein, and P intakes, age-matched BMD % of the vertebrae L2-4 and all femoral sites was greater than 90%. Correlation between Ca intake and vertebral BMD was examined closer. There was more significant linear correlation between vertebral BMD and Ca intake below 800mg/d(r=0.346, p<0.0001)than above(r=0.376, p<0.019), implying a threshold effect and vertebral BMD was better expressed as a function of the logarithm of calcium intake(r=0.3881, p<0.0001). These results suggest that Ca, protein, and P intakes greater than RDA help to maintain proper BMD in middle-aged prementopausal women. Especially dietary Ca have important role in increasing the vertebral BMD and 800mg/d of Ca intake is optimum amount.

  • PDF

Structure Determination of Syndecan-4 Transmembrane Domain using PISA Wheel Pattern and Molecular Dynamics simulation

  • Choi, Sung-Sub;Jeong, Ji-Ho;Kim, Ji-Sun;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2014
  • Human transmembrane proteins (hTMPs) are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these hTMPs, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of hTMPs. We tried to produce large amounts of Syndecan-4 transmembrane domain (Syd4-TM) that is related to the healing wounds and tumor for a long time. In this study, we performed the structure determination of Syd4-TM combining the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of expressed Syd4-TM and Molecular Dynamics (MD) simulation using Discovery Studio 3.1.

Biochemical and Structural Analysis of Hormone-sensitive Lipase Homolog EstE7: Insight into the Stabilized Dimerization of HSL-Homolog Proteins

  • Nam, Ki-Hyun;Park, Sung-Ha;Lee, Won-Ho;Hwang, Kwang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2627-2632
    • /
    • 2010
  • Hormone sensitive lipase (HSL) plays a major role in energy homeostasis and lipid metabolism. Several crystal structures of HSL-homolog proteins have been identified, which has led to a better understanding of its molecular function. HSL-homolog proteins exit as both monomer and dimer, but the biochemical and structural basis for such oligomeric states has not been successfully elucidated. Therefore, we determined the crystal structure of HSL-homolog protein EstE7 from a metagenome library at $2.2\;{\AA}$ resolution and characterized the oligomeric states of EstE7 both structurally and biochemically. EstE7 protein prefers the dimeric state in solution, which is supported by its higher enzymatic activity in the dimeric state. In the crystal form, EstE7 protein shows two-types of dimeric interface. Specifically, dimerization via the external ${beta}8$-strand occurred through tight association between two pseudosymmetric folds via salt bridges, hydrogen bonds and van der Waals interactions. This dimer formation was similar to that of other HSL-homolog protein structures such as AFEST, BEFA, and EstE1. We anticipate that our results will provide insight into the oligomeric state of HSL-homolog proteins.

Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

  • Furlong, Michael;Seong, Jae Young
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.

Magnetic Anisotropy Energy Distribution and Magnetization of CoPt Nanoparticles Encaged in Protein Shell

  • Lee, T.H.;Suh, B.J.;Jang, Z.H.
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Magnetic properties of CoPt nanoparticles (average size = 2.1 nm) encapsulated in synthesized protein shell have been investigated with SQUID (Superconducting Quantum Interference Device) magnetometer and analyzed by the recently developed non-equilibrium magnetization calculation by our group [T. H. Lee et al., Phys. Rev. B 90, 184411 (2014)]. Field dependence of magnetization measured at 2 K was successfully analyzed with modified Langevin function. In addition, small hysteresis loops having the coercive field of 890 Oe were observed at 2 K. Temperature dependence of magnetization has been measured with zero field cooled (ZFC) and field cooled (FC) protocol with slightly modified sequence in accordance with non-equilibrium magnetization calculation. The analysis on the M vs. T data revealed that the anisotropy energy barrier distribution is found to be very different from the log-normal distribution found in a size distribution. Zero temperature coercive field and Bloch coefficient have also been extracted from the analysis and the validity of those values is checked.

Establishment of Baculovirus Infected Insect Cell Line Expressing Porcine Salivary Lipocalin(SAL1) Protein

  • Seo, Hee-Won;Park, Da-Young;Kim, Min-Goo;Ahn, Mi-Hyun;Ko, Ki-Narm;Ko, Ki-Sung;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • Salivary lipocalin (SAL1) is a member of the lipocalin protein family that has a property to associate with many lipophilic molecules. The importance of SAL1 during pregnancy in pigs has been suggested by our previous study which has shown that SAL1 is expressed in the uterine endometrium in a cell type- and implantation stage-specific manner and secreted into the uterine lumen. However, function of SAL1 in the uterus during pregnancy in pigs is not known. To understand SAL1 function in the uterus during pregnancy, we generated recombinant porcine SAL1 protein in an insect cell line. Porcine SAL1 cDNA was cloned into a baculovirus expression vector using RT-PCR and total RNA from uterine endometrium on day 12 of pregnancy, and the expression vector was used to generate recombinant Bacmid containing the SAL1 gene. The recombinant Bacmid was then transfected Sf9 cell to produce recombinant baculovirus. By infecting Sf9 cell with recombinant baculovirus, we established a SAL1-expressing insect cell expression system. Immunoblot analysis confirmed SAL1 expression in the infected cells. Recombinant SAL1 produced by the Sf9 cell line will be useful for understanding physiological function of SAL1 during pregnancy in pigs.