Identification of Salmonella pullorum Genomic Sequences Using Suppression Subtractive Hybridization

  • Li, Qiuchun (Jiangsu Key Laboratory of Zoonosis, Yangzhou University) ;
  • Xu, Yaohui (Jiangsu Key Laboratory of Zoonosis, Yangzhou University) ;
  • Jiao, Xinan (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
  • Published : 2009.09.30

Abstract

Pullorum disease affecting poultry is caused by Salmonella enterica serovar Pullorum and results in severe economic loss every year, especially in countries with a developing poultry industry. The pathogenesis of S. Pullorum is not yet well defined, as the specific virulence factors still need to be identified. Thus, to isolate specific DNA fragments belonging to S. Pullorum, this study used suppression subtractive hybridization. As such, the genome of the S. Pullorum C79-13 strain was subtracted from the genome of Salmonella enterica serovar Gallinarum 9 and Salmonella enterica serovar Enteritidis CMCC(B) 50041, respectively, resulting in the identification of 20 subtracted fragments. A sequence homology analysis then revealed three types of fragment: phage sequences, plasmid sequences, and sequences with an unknown function. As a result, several important virulence-related genes encoding the IpaJ protein, colicin Y, tailspike protein, excisionase, and Rhs protein were identified that may play a role in the pathogenesis of S. Pullorum.

Keywords

References

  1. Akopyants, N. S., A. Fradkov, L. Diatchenko, J. E. Hill, P. D. Siebert, S. A. Lukyanov, E. D. Sverdlov, and D. E. Berg. 1998. PCR based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. U.S.A. 95: 13108-13113 https://doi.org/10.1073/pnas.95.22.13108
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  3. Auerbach, R. K., A. Tuanyok, W. S. Probert, L. Kenefic, A. J. Vogler1, D. C. Bruce, et al. 2007. Yersinia pestis evolution on a small timescale: Comparison of whole genome sequences from North America. PLoS One 8: e770 https://doi.org/10.1371/journal.pone.0000770
  4. Barrow, P. A., J. M. Simpson, M. A. Lovell, and M. M. Binns. 1987. Contribution of Salmonella Gallinarum large plasmid toward virulence in fowl typhoid. Infect. Immun. 55: 388-392
  5. Baumler, A. J., R. M. Tsolis, T. A. Ficht, and L. G. Adams. 1998. Evolution of host adapatation in Salmonella enterica. Infect. Immun. 66: 4579-4587
  6. Braun, V., H. Pilsl, and P. Gross. 1994. Colicins: Structures, modes of action, transfer through membranes, and evolution. Arch. Microbiol. 161: 199-206 https://doi.org/10.1007/BF00248693
  7. Buysse, J. M., D. S. Dunyak, A. B. Hartman, and M. M. Venkatesan. 1997. Identification and molecular characterization of a 27 kDa Shigella flexneri invasion plasmid antigen, $IpaJ^{\ast}$. Microb. Pathog. 23: 357-369 https://doi.org/10.1006/mpat.1997.0164
  8. Cannon, P. M. and P. Strike. 1992. Complete nucleotide sequence and gene organization of plasmid NTP16. Plasmid 27: 220-230 https://doi.org/10.1016/0147-619X(92)90024-5
  9. Chiu, C. H., L. H. Su, and C. Chu. 2004. Salmonella enterica serotype Choleraesuis: Epidemiology, pathogenesis, clinical disease, and treatment. Clin. Microb. Rev. 17: 311-322 https://doi.org/10.1128/CMR.17.2.311-322.2004
  10. Chu, C., C. H. Chiu, C. H. Chu, and J. T. Ou. 2002. Nucleotide and amino acid sequences of oriT-traM-traJ-traY-traA-traL regions and mobilization of virulence plasmids of Salmonella enterica serovars Enteritidis, Gallinarum-Pullorum, and Typhimurium. J. Bacteriol. 184: 2857-2862 https://doi.org/10.1128/JB.184.11.2857-2862.2002
  11. Chu, C. and C. H. Chiu. 2006. Evolution of the virulence plasmids of non-typhoid Salmonella and its association with antimicrobial resistance. Microbes Infect. 8: 1931-1936 https://doi.org/10.1016/j.micinf.2005.12.026
  12. Cramer, W. A., J. B. Heymann, S. L. Schendel, B. N. Deriy, F. S. Cohen, P. A. Elkins, and C. V. Stauffacher. 1995. Structurefunction of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct. 24: 611-641 https://doi.org/10.1146/annurev.bb.24.060195.003143
  13. Diatchenko, L., Y. F. Lau, A. P. Campbell, A. Chenchick, F. Moqadam, B. Huang, et al. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. U.S.A. 93: 6025-6030 https://doi.org/10.1073/pnas.93.12.6025
  14. Dorgal, L., J. Oberto, and B. A. Weisberg. 1993. Xis and Fis proteins prevent site-specific DNA inversion in lysogens of phage HK022. J. Bacteriol. 175: 693-700
  15. Glynn, M. K., C. Bopp, W. Dewitt, P. Dabney, M. Mokhtar, and F. J. Angulo. 1998. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N. Engl. J. Med. 338: 1333-1338 https://doi.org/10.1056/NEJM199805073381901
  16. Gunton, J. E., M. W. Gilmour, K. P. Baptista, T. D. Lawley, and D. E. Taylor. 2007. Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. Microbiology. 153: 428-441 https://doi.org/10.1099/mic.0.2006/001297-0
  17. Hill, C. W., C. H. Sandt, and D. A. Vlazny. 1994. Rhs elements of Escherichia coli: A family of genetic composites each encoding a large mosaic protein. Mol. Microbiol. 12: 865-871 https://doi.org/10.1111/j.1365-2958.1994.tb01074.x
  18. Hill, C. W., G. Feulner, M. S. Brody, S. Zhao, A. B. Sadosky, and C. H. Sandt. 1995. Correlation of Rhs elements with Escherichia coli population structure. Genetics 141: 15-24
  19. Israel, V. 1976. Role of the bacteriophage P22 tail in the early stages of infection. J. Virol. 18: 361-364
  20. Jones, M. A., P. Wigley, K. L. Page, S. D. Hulme, and P. A. Barrow. 2001. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 Type III secretion system but not the Salmonella pathogenicity island 1 Type III secretion system for virulence in chickens. Infect. Immun. 69: 5471- 5476 https://doi.org/10.1128/IAI.69.9.5471-5476.2001
  21. Li, J., N. H. Smith, K. Nelson, P. B. Crichton, D. C. Old, T. S. Whittam, and R. K. Selander. 1993. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J. Med. Microbiol. 38: 129-139 https://doi.org/10.1099/00222615-38-2-129
  22. Liu, M., Z. Ren, C. Lei, Y. Wen, W. Yao, and Z. Zheng. 2002. Sequence analysis and characterization of plasmid pSFD10 from Salmonella Choleraesuis. Plasmid 48: 59-63 https://doi.org/10.1016/S0147-619X(02)00008-2
  23. Porwollik, S., E. F. Boyd, C. Choy, P. Cheng, L. Florea, E. Proctor, and M. McClelland. 2004. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J. Bacteriol. 186: 5883-5898 https://doi.org/10.1128/JB.186.17.5883-5898.2004
  24. Prentice, M. B., K. D. James, J. Parkhill, S. G. Baker, K. Stevens, M. N. Simmonds, et al. 2001. Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid. J. Bacteriol. 183: 2586-2594 https://doi.org/10.1128/JB.183.8.2586-2594.2001
  25. Riley, M. A., L. Cadavid, M. S. Collett, M. N. Neely, M. D. Adams, C. M. Phillips, J. V. Neel, and D. Friedman. 2000. The newly characterized colicin Y provides evidence of positive selection in pore-former colicin diversification. Microbiology 146: 1671-1677
  26. Snoyenbos, G. H. 1991. Pullorum disease, pp. 73-87. In B. W. Calnek (ed. in chief), Diseases of Poultry, 9th Ed. Iowa State University Press, Ames
  27. Steinbacher, S., R. Seckler, S. Miller, B. Steipe, R. Huber, and P. Reinemer. 1994. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265: 383-386 https://doi.org/10.1126/science.8023158
  28. Tanaka, K., K. Nishimori, S. Makino, T. Nishimori, T. Kanno, R. Ishihara, et al. 2004. Molecular characterization of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 42: 1807-1812 https://doi.org/10.1128/JCM.42.4.1807-1812.2004
  29. Threlfall, E. J., J. A. Frost, L. R. Ward, and B. Rowe. 1996. Increasing spectrum of resistance in multiresistant Salmonella Typhimurium. Lancet 347: 1053-1054
  30. Wallis, T. S., S. M. Paulin, J. S. Plested, P. R. Watsom, and P. W. Jones. 1995. The Salmonella Dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle. Infect. Immun. 63: 2755-2761
  31. Wang, Y. D., S. Zhao, and C. W. Hill. 1998. Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J. Bacteriol. 180: 4102-4110
  32. Wigley, P., A. Berchieri Jr., K. L. Page, A. L. Smith, and P. A. Barrow. 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69: 7873-7879 https://doi.org/10.1128/IAI.69.12.7873-7879.2001