Browse > Article

Identification of Salmonella pullorum Genomic Sequences Using Suppression Subtractive Hybridization  

Li, Qiuchun (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
Xu, Yaohui (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
Jiao, Xinan (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 898-903 More about this Journal
Abstract
Pullorum disease affecting poultry is caused by Salmonella enterica serovar Pullorum and results in severe economic loss every year, especially in countries with a developing poultry industry. The pathogenesis of S. Pullorum is not yet well defined, as the specific virulence factors still need to be identified. Thus, to isolate specific DNA fragments belonging to S. Pullorum, this study used suppression subtractive hybridization. As such, the genome of the S. Pullorum C79-13 strain was subtracted from the genome of Salmonella enterica serovar Gallinarum 9 and Salmonella enterica serovar Enteritidis CMCC(B) 50041, respectively, resulting in the identification of 20 subtracted fragments. A sequence homology analysis then revealed three types of fragment: phage sequences, plasmid sequences, and sequences with an unknown function. As a result, several important virulence-related genes encoding the IpaJ protein, colicin Y, tailspike protein, excisionase, and Rhs protein were identified that may play a role in the pathogenesis of S. Pullorum.
Keywords
Salmonella enterica serovar Pullorum; suppression subtractive hybridization (SSH); poultry;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Buysse, J. M., D. S. Dunyak, A. B. Hartman, and M. M. Venkatesan. 1997. Identification and molecular characterization of a 27 kDa Shigella flexneri invasion plasmid antigen, $IpaJ^{\ast}$. Microb. Pathog. 23: 357-369   DOI   ScienceOn
2 Cramer, W. A., J. B. Heymann, S. L. Schendel, B. N. Deriy, F. S. Cohen, P. A. Elkins, and C. V. Stauffacher. 1995. Structurefunction of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct. 24: 611-641   DOI   ScienceOn
3 Dorgal, L., J. Oberto, and B. A. Weisberg. 1993. Xis and Fis proteins prevent site-specific DNA inversion in lysogens of phage HK022. J. Bacteriol. 175: 693-700   PUBMED
4 Glynn, M. K., C. Bopp, W. Dewitt, P. Dabney, M. Mokhtar, and F. J. Angulo. 1998. Emergence of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States. N. Engl. J. Med. 338: 1333-1338   DOI   ScienceOn
5 Israel, V. 1976. Role of the bacteriophage P22 tail in the early stages of infection. J. Virol. 18: 361-364   PUBMED   ScienceOn
6 Porwollik, S., E. F. Boyd, C. Choy, P. Cheng, L. Florea, E. Proctor, and M. McClelland. 2004. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J. Bacteriol. 186: 5883-5898   DOI   ScienceOn
7 Li, J., N. H. Smith, K. Nelson, P. B. Crichton, D. C. Old, T. S. Whittam, and R. K. Selander. 1993. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J. Med. Microbiol. 38: 129-139   DOI   PUBMED
8 Threlfall, E. J., J. A. Frost, L. R. Ward, and B. Rowe. 1996. Increasing spectrum of resistance in multiresistant Salmonella Typhimurium. Lancet 347: 1053-1054   PUBMED
9 Chiu, C. H., L. H. Su, and C. Chu. 2004. Salmonella enterica serotype Choleraesuis: Epidemiology, pathogenesis, clinical disease, and treatment. Clin. Microb. Rev. 17: 311-322   DOI   ScienceOn
10 Gunton, J. E., M. W. Gilmour, K. P. Baptista, T. D. Lawley, and D. E. Taylor. 2007. Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. Microbiology. 153: 428-441   DOI   ScienceOn
11 Wallis, T. S., S. M. Paulin, J. S. Plested, P. R. Watsom, and P. W. Jones. 1995. The Salmonella Dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle. Infect. Immun. 63: 2755-2761   PUBMED   ScienceOn
12 Auerbach, R. K., A. Tuanyok, W. S. Probert, L. Kenefic, A. J. Vogler1, D. C. Bruce, et al. 2007. Yersinia pestis evolution on a small timescale: Comparison of whole genome sequences from North America. PLoS One 8: e770   DOI   PUBMED
13 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402   DOI   ScienceOn
14 Liu, M., Z. Ren, C. Lei, Y. Wen, W. Yao, and Z. Zheng. 2002. Sequence analysis and characterization of plasmid pSFD10 from Salmonella Choleraesuis. Plasmid 48: 59-63   DOI   ScienceOn
15 Akopyants, N. S., A. Fradkov, L. Diatchenko, J. E. Hill, P. D. Siebert, S. A. Lukyanov, E. D. Sverdlov, and D. E. Berg. 1998. PCR based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. U.S.A. 95: 13108-13113   DOI   ScienceOn
16 Jones, M. A., P. Wigley, K. L. Page, S. D. Hulme, and P. A. Barrow. 2001. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 Type III secretion system but not the Salmonella pathogenicity island 1 Type III secretion system for virulence in chickens. Infect. Immun. 69: 5471- 5476   DOI   ScienceOn
17 Wang, Y. D., S. Zhao, and C. W. Hill. 1998. Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J. Bacteriol. 180: 4102-4110   PUBMED   ScienceOn
18 Cannon, P. M. and P. Strike. 1992. Complete nucleotide sequence and gene organization of plasmid NTP16. Plasmid 27: 220-230   DOI   ScienceOn
19 Chu, C., C. H. Chiu, C. H. Chu, and J. T. Ou. 2002. Nucleotide and amino acid sequences of oriT-traM-traJ-traY-traA-traL regions and mobilization of virulence plasmids of Salmonella enterica serovars Enteritidis, Gallinarum-Pullorum, and Typhimurium. J. Bacteriol. 184: 2857-2862   DOI   ScienceOn
20 Prentice, M. B., K. D. James, J. Parkhill, S. G. Baker, K. Stevens, M. N. Simmonds, et al. 2001. Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid. J. Bacteriol. 183: 2586-2594   DOI   ScienceOn
21 Braun, V., H. Pilsl, and P. Gross. 1994. Colicins: Structures, modes of action, transfer through membranes, and evolution. Arch. Microbiol. 161: 199-206   DOI   ScienceOn
22 Hill, C. W., G. Feulner, M. S. Brody, S. Zhao, A. B. Sadosky, and C. H. Sandt. 1995. Correlation of Rhs elements with Escherichia coli population structure. Genetics 141: 15-24   PUBMED   ScienceOn
23 Diatchenko, L., Y. F. Lau, A. P. Campbell, A. Chenchick, F. Moqadam, B. Huang, et al. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. U.S.A. 93: 6025-6030   DOI   ScienceOn
24 Barrow, P. A., J. M. Simpson, M. A. Lovell, and M. M. Binns. 1987. Contribution of Salmonella Gallinarum large plasmid toward virulence in fowl typhoid. Infect. Immun. 55: 388-392   PUBMED
25 Riley, M. A., L. Cadavid, M. S. Collett, M. N. Neely, M. D. Adams, C. M. Phillips, J. V. Neel, and D. Friedman. 2000. The newly characterized colicin Y provides evidence of positive selection in pore-former colicin diversification. Microbiology 146: 1671-1677   PUBMED   ScienceOn
26 Steinbacher, S., R. Seckler, S. Miller, B. Steipe, R. Huber, and P. Reinemer. 1994. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265: 383-386   DOI   PUBMED   ScienceOn
27 Chu, C. and C. H. Chiu. 2006. Evolution of the virulence plasmids of non-typhoid Salmonella and its association with antimicrobial resistance. Microbes Infect. 8: 1931-1936   DOI   ScienceOn
28 Hill, C. W., C. H. Sandt, and D. A. Vlazny. 1994. Rhs elements of Escherichia coli: A family of genetic composites each encoding a large mosaic protein. Mol. Microbiol. 12: 865-871   DOI   ScienceOn
29 Snoyenbos, G. H. 1991. Pullorum disease, pp. 73-87. In B. W. Calnek (ed. in chief), Diseases of Poultry, 9th Ed. Iowa State University Press, Ames
30 Tanaka, K., K. Nishimori, S. Makino, T. Nishimori, T. Kanno, R. Ishihara, et al. 2004. Molecular characterization of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 42: 1807-1812   DOI   ScienceOn
31 Baumler, A. J., R. M. Tsolis, T. A. Ficht, and L. G. Adams. 1998. Evolution of host adapatation in Salmonella enterica. Infect. Immun. 66: 4579-4587   PUBMED   ScienceOn
32 Wigley, P., A. Berchieri Jr., K. L. Page, A. L. Smith, and P. A. Barrow. 2001. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69: 7873-7879   DOI   ScienceOn