Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.199

Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors  

Furlong, Michael (Graduate School of Biomedical Sciences, Korea University)
Seong, Jae Young (Graduate School of Biomedical Sciences, Korea University)
Publication Information
Biomolecules & Therapeutics / v.25, no.1, 2017 , pp. 57-68 More about this Journal
Abstract
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.
Keywords
Neuropeptide; 7TMR; G protein-coupled receptor; Coevolution; Gene duplication; Whole genome duplication; Evolutionary history;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Venkatesh, B., Lee, A. P., Ravi, V., Maurya, A. K., Lian, M. M., Swann, J. B., Ohta, Y., Flajnik, M. F., Sutoh, Y., Kasahara, M., Hoon, S., Gangu, V., Roy, S. W., Irimia, M., Korzh, V., Kondrychyn, I., Lim, Z. W., Tay, B. H., Tohari, S., Kong, K. W., Ho, S., Lorente-Galdos, B., Quilez, J., Marques-Bonet, T., Raney, B. J., Ingham, P. W., Tay, A., Hillier, L. W., Minx, P., Boehm, T., Wilson, R. K., Brenner, S. and Warren, W. C. (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174-179.   DOI
2 Vienne, A., Rasmussen, J., Abi-Rached, L., Pontarotti, P. and Gilles, A. (2003) Systematic phylogenomic evidence of en bloc duplication of the ancestral 8p11.21-8p21.3-like region. Mol. Biol. Evol. 20, 1290-1298.   DOI
3 Wong, M. K., Sze, K. H., Chen, T., Cho, C. K., Law, H. C., Chu, I. K. and Wong, A. O. (2013) Goldfish spexin: solution structure and novel function as a satiety factor in feeding control. Am. J. Physiol. Endocrinol. Metab. 305, E348-E366.   DOI
4 Yegorov, S. and Good, S. (2012) Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS ONE 7, e32923.   DOI
5 Yue, J. X., Yu, J. K., Putnam, N. H. and Holland, L. Z. (2014) The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution. Genome Biol. Evol. 6, 2681-2696.   DOI
6 Oh, D. Y., Kim, K., Kwon, H. B. and Seong, J. Y. (2006) Cellular and molecular biology of orphan G protein-coupled receptors. Int. Rev. Cytol. 252, 163-218.
7 Osugi, T., Ubuka, T. and Tsutsui, K. (2014) Review: evolution of GnIH and related peptides structure and function in the chordates. Front. Neurosci. 8, 255.
8 Park, C. R., Moon, M. J., Park, S., Kim, D. K., Cho, E. B., Millar, R. P., Hwang, J. I. and Seong, J. Y. (2013) A novel glucagon-related peptide (GCRP) and its receptor GCRPR account for coevolution of their family members in vertebrates. PLoS ONE 8, e65420.   DOI
9 Putnam, N. H., Butts, T., Ferrier, D. E., Furlong, R. F., Hellsten, U., Kawashima, T., Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J. K., Benito-Gutierrez, E. L., Dubchak, I., Garcia-Fernandez, J., Gibson-Brown, J. J., Grigoriev, I. V., Horton, A. C., de Jong, P. J., Jurka, J., Kapitonov, V. V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, S., Osoegawa, K., Pennacchio, L. A., Salamov, A. A., Satou, Y., Sauka-Spengler, T., Schmutz, J., Shin-I, T., Toyoda, A., Bronner-Fraser, M., Fujiyama, A., Holland, L. Z., Holland, P. W., Satoh, N. and Rokhsar, D. S. (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-1071.   DOI
10 Yun, S., Furlong, M., Sim, M., Cho, M., Park, S., Cho, E. B., Reyes-Alcaraz, A., Hwang, J. I., Kim, J. and Seong, J. Y. (2015) Prevertebrate local gene duplication facilitated expansion of the neuropeptide GPCR superfamily. Mol. Biol. Evol. 32, 2803-2817.   DOI
11 Lindemans, M., Liu, F., Janssen, T., Husson, S. J., Mertens, I., Gade, G. and Schoofs, L. (2009) Adipokinetic hormone signaling through the gonadotropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 106, 1642-1647.   DOI
12 Kim, D. K., Yun, S., Son, G. H., Hwang, J. I., Park, C. R., Kim, J. I., Kim, K., Vaudry, H. and Seong, J. Y. (2014a) Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology 155, 1864-1873.   DOI
13 Kim, H. Y., Hwang, J. I., Moon, M. J. and Seong, J. Y. (2014b) A novel long-acting glucagon-like peptide-1 agonist with improved efficacy in insulin secretion and ${\beta}$-cell growth. Endocrinol. Metab. (Seoul) 29, 320-327.   DOI
14 Klingel, S., Morath, I., Strietz, J., Menzel, K., Holstein, T. W. and Gradl, D. (2012) Subfunctionalization and neofunctionalization of vertebrate Lef/Tcf transcription factors. Dev. Biol. 368, 44-53.   DOI
15 Levoye, A., Dam, J., Ayoub, M. A., Guillaume, J. L., Couturier, C., Delagrange, P. and Jockers, R. (2006) The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 25, 3012-3023.   DOI
16 Lewis, K. N., Soifer, I., Melamud, E., Roy, M., McIsaac, R. S., Hibbs, M. and Buffenstein, R. (2016) Unraveling the message: insights into comparative genomics of the naked mole-rat. Mamm. Genome 27, 259-278.   DOI
17 Lundin, L. G. (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1-19.   DOI
18 Lynch, M., O'Hely, M., Walsh, B. and Force, A. (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789-1804.
19 Rastogi, S. and Liberles, D. A. (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol. Biol. 5, 28.   DOI
20 Rask-Andersen, M., Almen, M. S. and Schioth, H. B. (2011) Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579-590.   DOI
21 Redelsperger, F., Cornelis, G., Vernochet, C., Tennant, B. C., Catzeflis, F., Mulot, B., Heidmann, O., Heidmann, T. and Dupressoir, A. (2014) Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the Rodentia squirrelrelated clade. J. Virol. 88, 7915-7928.   DOI
22 Larhammar, D. and Salaneck, E. (2004) Molecular evolution of NPY receptor subtypes. Neuropeptides 38, 141-151.   DOI
23 Dupressoir, A., Vernochet, C., Bawa, O., Harper, F., Pierron, G., Opolon, P. and Heidmann, T. (2009) Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl. Acad. Sci. U.S.A. 106, 12127-12132.   DOI
24 Elphick, M. R. and Mirabeau, O. (2014) The evolution and variety of RFamide-type neuropeptides: insights from deuterostomian invertebrates. Front. Endocrinol. (Lausanne) 5, 93.
25 Lagerstrom, M. C., Fredriksson, R., Bjarnadottir, T. K., Fridmanis, D., Holmquist, T., Andersson, J., Yan, Y. L., Raudsepp, T., Zoorob, R., Kukkonen, J. P., Lundin, L. G., Klovins, J., Chowdhary, B. P., Postlethwait, J. H. and Schioth, H. B. (2005) Origin of the prolactin-releasing hormone (PRLH) receptors: evidence of coevolution between PRLH and a redundant neuropeptide Y receptor during vertebrate evolution. Genomics 85, 688-703.   DOI
26 Lagerstrom, M. C. and Schioth, H. B. (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357.   DOI
27 Larhammar, D., Lundin, L. G. and Hallbook, F. (2002) The human Hoxbearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res. 12, 1910-1920.   DOI
28 Lee, Y. R., Tsunekawa, K., Moon, M. J., Um, H. N., Hwang, J. I., Osugi, T., Otaki, N., Sunakawa, Y., Kim, K., Vaudry, H., Kwon, H. B., Seong, J. Y. and Tsutsui, K. (2009) Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology 150, 2837-2846.   DOI
29 Meyer, A. and Van de Peer, Y. (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937-945.   DOI
30 Mehta, T. K., Ravi, V., Yamasaki, S., Lee, A. P., Lian, M. M., Tay, B. H., Tohari, S., Yanai, S., Tay, A., Brenner, S. and Venkatesh, B. (2013) Evidence for at least six hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc. Natl. Acad. Sci. U.S.A. 110, 16044-16049.   DOI
31 Mirabeau, O., Perlas, E., Severini, C., Audero, E., Gascuel, O., Possenti, R., Birney, E., Rosenthal, N. and Gross, C. (2007) Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 17, 320-327.   DOI
32 Mirabeau, O. and Joly, J. S. (2013) Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. U.S.A. 110, E2028-E2037.   DOI
33 Hauser, F., Cazzamali, G., Williamson, M., Blenau, W. and Grimmelikhuijzen, C. J. (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol. 80, 1-19.   DOI
34 Amemiya, C. T., Powers, T. P., Prohaska, S. J., Grimwood, J., Schmutz, J., Dickson, M., Miyake, T., Schoenborn, M. A., Myers, R. M., Ruddle, F. H. and Stadler, P. F. (2010) Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. Proc. Natl. Acad. Sci. U.S.A. 107, 3622-3627.   DOI
35 Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272.   DOI
36 Gibson, T. A. and Goldberg, D. S. (2009) Questioning the ubiquity of neofunctionalization. PLoS Comput. Biol. 5, e1000252.   DOI
37 Haitina, T., Takahashi, A., Holmen, L., Enberg, J. and Schioth, H. B. (2007) Further evidence for ancient role of ACTH peptides at melanocortin (MC) receptors; pharmacology of dogfish and lamprey peptides at dogfish MC receptors. Peptides 28, 798-805.   DOI
38 Harris, R. M., Dijkstra, P. D. and Hofmann, H. A. (2014) Complex structural and regulatory evolution of the pro-opiomelanocortin gene family. Gen. Comp. Endocrinol. 195, 107-115.   DOI
39 He, X. and Zhang, J. (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169, 1157-1164.   DOI
40 Holland, P. W., Garcia-Fernandez, J., Williams, N. A. and Sidow, A. (1994) Gene duplications and the origins of vertebrate development. Dev. Suppl. 125-133.
41 Burt, D. W., Bruley, C., Dunn, I. C., Jones, C. T., Ramage, A., Law, A. S., Morrice, D. R., Paton, I. R., Smith, J., Windsor, D., Sazanov, A., Fries, R. and Waddington, D. (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402, 411-413.   DOI
42 Amores, A., Catchen, J., Ferrara, A., Fontenot, Q. and Postlethwait, J. H. (2011) Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188, 799-808.   DOI
43 Assis, R. and Bachtrog, D. (2013) Neofunctionalization of young duplicate genes in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 110, 17409-17414.   DOI
44 Baggio, L. L. and Drucker, D. J. (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131-2157.   DOI
45 Caputo Barucchi, V., Giovannotti, M., Nisi Cerioni, P. and Splendiani, A. (2013) Genome duplication in early vertebrates: insights from agnathan cytogenetics. Cytogenet. Genome Res. 141, 80-90.   DOI
46 Cardoso, J. C., Vieira, F. A., Gomes, A. S. and Power, D. M. (2010) The serendipitous origin of chordate secretin peptide family members. BMC Evol. Biol. 10, 135.   DOI
47 Cerda-Reverter, J. M., Martinez-Rodriguez, G., Zanuy, S., Carrillo, M. and Larhammar, D. (2000) Molecular evolution of the neuropeptide Y (NPY) family of peptides: cloning of three NPY-related peptides from the sea bass (Dicentrarchus labrax). Regul. Pept. 95, 25-34.   DOI
48 Moon, M. J., Kim, H. Y., Kim, S. G., Park, J., Choi, D. S., Hwang, J. I. and Seong, J. Y. (2010) Tyr1 and Ile7 of glucose-dependent insulinotropic polypeptide (GIP) confer differential ligand selectivity toward GIP and glucagon-like peptide-1 receptors. Mol. Cells 30, 149-154.   DOI
49 Reyes-Alcaraz, A., Lee, Y. N., Son, G. H., Kim, N. H., Kim, D. K., Yun, S., Kim, D. H., Hwang, J. I. and Seong, J. Y. (2016) Development of spexin-based human galanin receptor type II-specific agonists with increased stability in serum and anxiolytic effect in mice. Sci. Rep. 6, 21453.   DOI
50 Santini, S., Boore, J. L. and Meyer, A. (2003) Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res. 13, 1111-1122.   DOI
51 Swanson, C. J., Blackburn, T. P., Zhang, X., Zheng, K., Xu, Z. Q., Hokfelt, T., Wolinsky, T. D., Konkel, M. J., Chen, H., Zhong, H., Walker, M. W., Craig, D. A., Gerald, C. P. and Branchek, T. A. (2005) Anxiolytic-and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc. Natl. Acad. Sci. U.S.A. 102, 17489-17494.   DOI
52 Sefideh, F. A., Moon, M. J., Yun, S., Hong, S. I., Hwang, J. I. and Seong, J. Y. (2014) Local duplication of gonadotropin-releasing hormone (GnRH) receptor before two rounds of whole genome duplication and origin of the mammalian GnRH receptor. PLoS ONE 9, e87901.   DOI
53 Shiba, K., Kageyama, H., Takenoya, F. and Shioda, S. (2010) Galaninlike peptide and the regulation of feeding behavior and energy metabolism. FEBS J. 277, 5006-5013.   DOI
54 Steiner, D. F. (1998) The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31-39.   DOI
55 Taylor, A., Madison, F. N. and Fraley, G. S. (2009) Galanin-like peptide stimulates feeding and sexual behavior via dopaminergic fibers within the medial preoptic area of adult male rats. J. Chem. Neuroanat. 37, 105-111.   DOI
56 Ufuk, E. (2014) G-protein coupled receptor (GPCR) targeting: technologies and global markets. BCC Res. BIO136A.
57 Vaudry, H. and Seong, J. Y. (2014) Neuropeptide GPCRs in Neuroendocrinology. Front. Endocrinol. (Lausanne) 5, 41.
58 M'Kadmi, C., Leyris, J. P., Onfroy, L., Gales, C., Sauliere, A., Gagne, D., Damian, M., Mary, S., Maingot, M., Denoyelle, S., Verdie, P., Fehrentz, J. A., Martinez, J., Baneres, J. L. and Marie, J. (2015) Agonism, antagonism, and inverse agonism bias at the ghrelin receptor signaling. J. Biol. Chem. 290, 27021-27039.   DOI
59 Moon, M. J., Lee, Y. N., Park, S., Reyes-Alcaraz, A., Hwang, J. I., Millar, R. P., Choe, H. and Seong, J. Y. (2015) Ligand binding pocket formed by evolutionarily conserved residues in the glucagon-like peptide-1 (GLP-1) receptor core domain. J. Biol. Chem. 290, 5696-5706.   DOI
60 Morais, J. S., Souza, M. M., Campanha, T. M., Muller, C. J., Bittencourt, A. S., Bortoli, V. C., Schenberg, L. C. and Beijamini, V. (2016) Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus. Behav. Brain Res. 314, 125-133.   DOI
61 Nakatani, Y., Takeda, H., Kohara, Y. and Morishita, S. (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 17, 1254-1265.   DOI
62 Nishida, C., Ishijima, J., Kosaka, A., Tanabe, H., Habermann, F. A., Griffin, D. K. and Matsuda, Y. (2008) Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res. 16, 171-181.   DOI
63 Nordstrom, K. J., Sallman Almen, M., Edstam, M. M., Fredriksson, R. and Schioth, H. B. (2011) Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol. Biol. Evol. 28, 2471-2480.   DOI
64 Jensen, J. D. and Bachtrog, D. (2011) Characterizing the influence of effective population size on the rate of adaptation: Gillespie's Darwin domain. Genome Biol. Evol. 3, 687-701.   DOI
65 Holland, P. W. (2003) More genes in vertebrates? J. Struct. Funct. Genomics 3, 75-84.   DOI
66 Hwang, J. I., Moon, M. J., Park, S., Kim, D. K., Cho, E. B., Ha, N., Son, G. H., Kim, K., Vaudry, H. and Seong, J. Y. (2013) Expansion of secretin-like G protein-coupled receptors and their peptide ligands via local duplications before and after two rounds of whole-genome duplication. Mol. Biol. Evol. 30, 1119-1130.   DOI
67 Hwang, J. K., Yun, S., Moon M. J., Park C. R. and Seong, J. Y. (2014) Molecular evolution of GPCRs: GLP1/GLP1 receptors. J. Mol. Endocrinol. 52, T15-T27.   DOI
68 Jiang, H., Lkhagva, A., Daubnerova, I., Chae, H. S., Simo, L., Jung, S. H., Yoon, Y. K., Lee, N. R., Seong, J. Y., Zitnan, D., Park, Y. and Kim, Y. J. (2013) Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. Proc. Natl. Acad. Sci. U.S.A. 110, E3526-E3534.   DOI
69 Katritch, V., Cherezov, V. and Stevens, R. C. (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17-27.   DOI
70 Cho, H. J., Acharjee, S., Moon, M. J., Oh, D. Y., Vaudry, H., Kwon, H. B. and Seong, J. Y. (2007) Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. Gen. Comp. Endocrinol. 153, 98-107.   DOI
71 Civelli, O., Saito, Y., Wang, Z., Nothacker, H. P. and Reinscheid, R. K. (2006) Orphan GPCRs and their ligands. Pharmacol. Ther. 110, 525-532.   DOI
72 Conroy, J. L., Free, R. B. and Sibley, D. R. (2015) Identification of G protein-biased agonists that fail to recruit ${\beta}$-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem. Neurosci. 6, 681-692.   DOI
73 Cornelis, G., Vernochet, C., Malicorne, S., Souquere, S., Tzika, A. C., Goodman, S. M., Catzeflis, F., Robinson, T. J., Milinkovitch, M. C., Pierron, G., Heidmann, O., Dupressoir, A. and Heidmann, T. (2014) Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs. Proc. Natl. Acad. Sci. U.S.A. 111, E4332-E4341.   DOI
74 Dores, R. M. (2013) Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor. Front. Neurosci. 7, 28.
75 Kim, D. K., Cho, E. B., Moon, M. J., Park, S., Hwang, J. I., Kah, O., Sower, S. A., Vaudry, H. and Seong, J. Y. (2011) Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: secrets hidden in genomes. Gen. Comp. Endocrinol. 170, 68-78.   DOI
76 Kim, D. K., Cho, E. B., Moon, M. J., Park, S., Hwang, J. I., Do Rego, J. L., Vaudry, H. and Seong, J. Y. (2012) Molecular coevolution of neuropeptides gonadotropin-releasing hormone and kisspeptin with their cognate G protein-coupled receptors. Front. Neurosci. 6, 3.
77 Abi-Rached, L., Gilles, A., Shiina, T., Pontarotti, P. and Inoko, H. (2002) Evidence of en bloc duplication in vertebrate genomes. Nat. Genet. 31, 100-105   DOI
78 Ahmad, R., Wojciech, S. and Jockers, R. (2015) Hunting for the function of orphan GPCRs - beyond the search for the endogenous ligand. Br. J. Pharmacol. 172, 3212-3228.   DOI
79 Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., Liew, W. C., Mpamhanga, C. P., Bonner, T. I., Neubig, R. R., Pin, J. P., Spedding. M. and Harmar, A. J. (2013) International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967-986.   DOI
80 Dehal, P. and Boore, J. L. (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314.   DOI