Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.1.001

Magnetic Anisotropy Energy Distribution and Magnetization of CoPt Nanoparticles Encaged in Protein Shell  

Lee, T.H. (Department of Physics, Kookmin University)
Suh, B.J. (Department of Physics, The Catholic University of Korea)
Jang, Z.H. (Department of Physics, Kookmin University)
Publication Information
Abstract
Magnetic properties of CoPt nanoparticles (average size = 2.1 nm) encapsulated in synthesized protein shell have been investigated with SQUID (Superconducting Quantum Interference Device) magnetometer and analyzed by the recently developed non-equilibrium magnetization calculation by our group [T. H. Lee et al., Phys. Rev. B 90, 184411 (2014)]. Field dependence of magnetization measured at 2 K was successfully analyzed with modified Langevin function. In addition, small hysteresis loops having the coercive field of 890 Oe were observed at 2 K. Temperature dependence of magnetization has been measured with zero field cooled (ZFC) and field cooled (FC) protocol with slightly modified sequence in accordance with non-equilibrium magnetization calculation. The analysis on the M vs. T data revealed that the anisotropy energy barrier distribution is found to be very different from the log-normal distribution found in a size distribution. Zero temperature coercive field and Bloch coefficient have also been extracted from the analysis and the validity of those values is checked.
Keywords
magnetic nanoparticle; CoPt; non-equilibrium magnetization calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. B. Na, I. C. Song, and T. Hyeon, Adv. Mater. 21, 2133 (2009).   DOI
2 C. D. Kaddi, J. H. Phan, and M. D. Wang, Nanomedicine 8, 1323 (2013).   DOI
3 S. M. Morgan, H. Sohn, and R. H. Victora, J. Appl. Phys. 109, 07B305-1 (2011).
4 X. T. Meng, H. C. Seton, L. T. Lu, I. A. Prior, N. T. K. Thanh, and B. Song, Nanoscale 3, 977 (2011).   DOI
5 M. Mandal, B. Das, and K. Mandal, J. Colloid Interface Sci. 335, 40 (2009).   DOI
6 T. Ould-Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M. J. Casanove, A. Mosset, M. Respaud, and J. M. Broto, J. Phys. Chem. B 104, 695 (2000).   DOI
7 D. Kim, B. H. San, S. H. Moh, H. Park, D. Y. Kim, S. Lee, and K. K. Kim, Biochem. Biophys. Res. Commun. 391, 431 (2010).   DOI
8 T. H. Lee, K.-Y. Choi, G.-H. Kim, B. J. Suh, and Z. H. Jang, Phys. Rev. B 90, 184411 (2014).   DOI
9 Salah A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, 14717 (1997).   DOI
10 N. J. O. Silva, V. S. Amaral, L. D. Carlos, B. Rodriguez Gonzalez, L. M. Liz-Marzan, T. S. Berquo, S. K. Banerjee, V. de Zea Bermudez, A. Millan, and F. Palacio, Phys. Rev. B 77, 134426 (2008).   DOI
11 F. Wiekhorst, E. Shevchenko, H. Weller, and J. Kotzler, Phys. Rev. B 67, 224416 (2003).   DOI
12 B. Warne, O. I. Kasyutich, E. L. Mayes, J. A. L. Wiggins, and K. K. W. Wong, IEEE Trans. Magn. 36, 3009 (2000).   DOI
13 Boi Hoa San, Sanghyun Lee, Sang Hyun Moh, Je-Geun Park, Jung Hee Lee, Hye-Yeon Hwangb, and Kyeong Kyu Kim, J. Mater. Chem. B 1, 1453 (2013).   DOI
14 B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38, R199 (2005).   DOI