• Title/Summary/Keyword: protein adsorption

Search Result 208, Processing Time 0.03 seconds

Effects of Scratching on the Surface of Protein Chip Plates (단백질 칩 기판의 표면 스크래칭 효과)

  • Hyun, June-Won;Hwang, Jeong-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.98-102
    • /
    • 2007
  • [ $NiCl_2$ ] and poly-L-lysine coated protein chip plates have been fabricated using a spin coating system. Water has been used as solvent and scratching effects on glass slides and ITO have been investigated. We also observed the surface properties of $NiCl_2$ and poly-L-lysine coated slides by using PSA(Particle size analyzer) and AFM(Atomic force microscope). The AFM results imply that the surface patterns created in the spin coating system determine the protein adsorption. Adsorption of histidine-tagged KRS proteins immobilized on glass slides and ITO was analyzed using a BAS image system. The results suggest that the scratching effect was increased ability of protein adsorption.

Adsorption Equilibrium of Bovine Serum Albumin Protein on Porous Polymer Microgels (다공성 고분자 마이크로겔의 Bovine Serum Albumin 단백질의 흡착평형)

  • Kim, Kong-Soo;Kang, Seog-Ho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.311-316
    • /
    • 1998
  • The adsorption equilibrium properties of bovine serum albumin(BSA-protein) for three kinds of porous microgels with different physical and chemical features were investigated. The adsorption amount of BSA-protein on poly(butyl methacrylate)(PBMA) microgels was higher than those on poly(vinyl pyridine)(PVP) and poly(acrylonitrile) (PAN) microgels due to the hydrophobic interaction between polymer and protein in an aqueous solution. And PBMA microgels had more irreversible adsorption equilibrium properties the PVP and PAN microgels. It implies that hydrophobic interaction plays a more important role in adsorption properties of BAS-protein than physical properties of polymer and electrostatic attraction between protein and polymer microgels. Characteristics of the microgels used in this study followed Langmuir equation better than the Freundlich equation.

  • PDF

Adsorption of Globular Proteins to Vaccine Adjuvants

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.346-351
    • /
    • 1997
  • The maximum adsorption/desorption conditions and the adsorption mechanism of globular proteins to vaccine adjuvants were determined. The maximum adsorption ratio of protein to the $Al^{3+}$ content of aluminum oxyhydroxide and the optimal adsorption pH are 2:1 (${\mu}g:{\mu}g$) for bovine serum albumin (BSA) at pH 6.0 and 2.5:1 (${\mu}g:{\mu}g$) for immunoglobulin G (IgG) at pH 7.0, respectively. The maximum adsorption ratio onto aluminum phosphate gel was 1.5:1 (${\mu}g$ Protein:${\mu}g$ $Al^{3+}$) at pH 5.0 for both BSA and IgG. Adsorption of the native globular proteins, BSA and IgG, to aluminum oxyhydroxide and aluminum phosphate gel was reversible as a function of pH. Complete desorption of these proteins from aluminum phosphate gel was observed at alkaline pH, whereas only 80~90% removal from aluminum oxyhydroxide was achieved with alkaline pH and 50 mM phosphate buffer. We conclude that electrostatic and hydrogen bonding interactions between the native proteins and adjuvants are important binding mechanisms for adsorption, and that the surface charge of the protein and the colloid components control the maximum adsorption conditions.

  • PDF

Development of Hydrogel for Decrease Protein Adsorption and Application to Intraocular Lens (단백질흡착 감소용 하이드로겔의 개발 및 인공수정체로의 적용)

  • Ko, Na Young;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The purpose of this study was to decrease the protein adsorption and improve the function of the hydrophobic acrylic Intraocular lens(IOL). Hydrophobic acrylic intraocular lenses were prepared by using ethyleneglycol phenyletheracrylate (EGPEA), styrene and 2-hydroxyethyl methacrylate (HEMA). Polyvinyl pyrrolidone (PVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were used as additives. Water contents, wettability, light transmittance and protein adsorption amount were measured to evaluate the physical properties of the intraocular lens. The water content and wettability of all samples containing additives were increased and the amount of protein adsorption decreased. In particular, samples containing MPC showed a further decrease in protein adsorption. The hydrophobic acrylic intraocular lens with PVP and MPC was found to improve the function of the intraocular lens by reducing the protein adsorption while having basic physical properties.

Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion

  • Chien, Hsiu-Wen;Keng, Ming-Chun;Chen, Hsien-Yeh;Huang, Sheng-Tung;Tsai, Wei-Bor
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.59-69
    • /
    • 2016
  • A surface resisting protein adsorption and cell adhesion is highly desirable for many biomedical applications such as diagnostic devices, biosensors and blood-contacting devices. In this study, a surface conjugated with sulfobetaine molecules was fabricated via the click reaction for the anti-fouling purpose. An alkyne-containing substrate (Alkyne-PPX) was generated by chemical vapor deposition of 4-ethynyl-[2,2]paracyclophane. Azide-ended mono-sulfobetaine molecules were synthesized and then conjugated on Alkyne-PPX via the click reaction. The protein adsorption from 10% serum was reduced by 57%, while the attachment of L929 cells was reduced by 83% onto the sulfobetaine-PPX surface compared to the protein adsorption and cell adhesion on Alkyne-PPX. In conclusion, we demonstrate that conjugation of mono-sulfobetaine molecules via the click chemistry is an effective way for reduction of non-specific protein adsorption and cell attachment.

Raman Detection of Protein Interfacial Conformations

  • Jang, Mi-Jin;Cho, Il-Young;Callahan, Patricia
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.352-355
    • /
    • 1997
  • The surface adsorbed protein conformations onto the vaccine adjuvants were observed with a Raman spectroscopy by using the maximum adsorption conditions described previously. The adsorbed state Raman vibrational spectra and subsequent spectral analysis display no conformational changes for BSA or IgG relative to their native species in solution.

  • PDF

Effect of Solvent on the Surface of Protein Chip Plate (단백질 칩 기판의 표면에 미치는 용매 효과)

  • 현준원;윤미영;안상민;노승정;허영덕;박헌용;송예신;피재호;김경례
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.76-79
    • /
    • 2004
  • Nickel chloride coated protein chip plate was developed by using a spin coating method. The ability of histidine tagged protein adsorption was investigated at various solvents. The surface of plate has a large aggregated nickel complex with high density in water. However, the surface of plate has a very small size of aggregated nickel complex with low density in isopropanol. The ability of protein adsorption decreased as increasing the size of alkyl chain in various alcohol solvents. The mechanism on the ability of protein adsorption at the plate surface is discussed.

The Effect of Wettability and Protein Adsorption of Contact Lens by Alginic Acid (알긴산에 의한 콘택트렌즈의 습윤성과 단백질 흡착 효과)

  • Ko, Na Young;Lee, Kyung Mun;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.352-358
    • /
    • 2017
  • The addition of alginic acid, a natural polysaccharide, to improve the wettability and the reduction of protein adsorption of hydrogel contact lenses. Hydrogel contact lenses were manufactured with various monomers such as 2-methacryloyloxyethyl phosphorylcholine (MPC) and NVP (N-Vinyl-2-pyrrolidone). Alginic acid was added by by the initial mixing method and the interpenetrating polymer networks(IPN) method. Properties of contact lens such as contact angle, oxygen permeability, and protein adsorption amount were evaluated. The oxygen permeability and wettability of the IPN-treated alginate samples were higher than those of the samples that were not treated with IPN. The physical properties were improved as the concentration of IPN-treated alginic acid increased. Protein adsorption decreased by the addition of alginic acid and further decreased with IPN. In particular, contact lenses containing MPC and NVP significantly decreased protein adsorption. Therefore, the effect of alginate on the functional improvement of contact lens was confirmed.

Plasma Protein Adsorption to Anion Substituted Poly(vinyl alcohol) Membranes

  • Ryu, Kyu-Eun;Hyangshuk Rhim;Park, Chong-Won;Chun, Heung-Jae;Hong, Seung-Hwa;Kim, Jae-Jin;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.451-457
    • /
    • 2003
  • Anion-substituted poly(vinyl alcohol) (PVA) membranes, carboxymethylated PVA (C-PVA), and sulfonated PVA (S-PVA) were prepared and the effects of these substitutions on the plasma protein adsorption were studied by one- and two-dimensional gel electrophoresis and immunoblotting. When Cuprophane was used as a negative control, the amount of total proteins bound to samples decreased in the order Cuprophane > PVA > C-PVA > S-PVA, which we attribute to the effects of the surface characteristics of the samples, such as their surface tensions and electrostatic properties, on the adsorption of proteins to the surfaces of the materials. The results revealed that albumin was the most abundant protein in all the samples. The proportion of adsorbed fibrinogen to S-PVA exceeded those of PVA and C-PVA, whereas S-PVA exhibited the lowest IgG adsorption affinity among the samples we studied.

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF