• Title/Summary/Keyword: protein A-gold technique

Search Result 12, Processing Time 0.026 seconds

Immunohistochemistry for detection of Aujeszky's disease virus antigens: Protein A-gold labeling of ultrathin sections for electron microscopy (오제스키병 바이러스 항원검출을 위한 면역조직화학적 연구 : 전자현미경적 관찰을 위한 초박절편내 protein A-gold labeling)

  • Kim, Soon-bok
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.541-548
    • /
    • 1989
  • The present study was carried out to determine viral antigens and its morphogenesis in the ultrathin frozen and araldite sections of cell cultures infected with ADV by protein A-gold labeling. ADV antigens were labeled with 10nm gold probes, and electron-dense gold particles were mainly present on viral nucleocapsids and viral envelopes. Immunogold labeling in the ultracryosections showed a very low degree of interaction with tissue structures. Immunogold labeling in the ultrathin cryosections can be useful tool for the detection of ADV antigens, and the technique also may provide its great potential for immunocytochemical studies on various virus-host cell Interactions.

  • PDF

Strategies in Protein Immobilization on a Gold Surface

  • Park, Jeho;Kim, Moonil
    • Applied Science and Convergence Technology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Protein immobilization on a gold surface plays an important role in the usefulness of biosensors that utilize gold-coated surfaces such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM), etc. For developing high performance biosensors, it is necessarily required that immobilized proteins must remain biologically active. Loss of protein activity and maintenance of its stability on transducer surfaces is directly associated with the choice of immobilization methods, affecting protein-protein interactions. During the past decade, a variety of strategies have been extensively developed for the effective immobilization of proteins in terms of the orientation, density, and stability of immobilized proteins on analytical devices operating on different principles. In this review, recent advances and novel strategies in protein immobilization technologies developed for biosensors are briefly discussed, thereby providing an useful information for the selection of appropriate immobilization approach.

Surface Plasmon Resonance Imaging Analysis of Hexahistidine-tagged Protein on the Gold Thin Film Coated with a Calix Crown Derivative

  • Chung, Bong-Hyun;Baek, Seung-Hak;Shin, Yong-Beom;Kim, Min-Gon;Ro, Hyeon-Su;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.143-146
    • /
    • 2004
  • A surface plasmon resonance (SPR) imaging system was constructed and used to detect the hexahistidine-ubiquitin-tagged human parathyroid hormone fragment (His$\sub$6/-Ub-hPTHF(1-34)) expressed in Escherichia coli. The hexahistidine-specific antibody was immobilized on a thin gold film coated with ProLinker$\^$TM/ B, a novel calixcrown derivative with a bifunctional coupling property that permits efficient immobilizaton of capture proteins on solid matrices. The soluble and insoluble fractions of an E. coli cell lysate were spotted onto the antibody-coated gold chip, which was then washed with buffer (pH 7.4) solution and dried. SPR imaging measurements were carried out to detect the expressed His$\sub$6/-Ub-hPTHF(1-34). There was no discernible protein image in the uninduced cell lysate, indicating that non-specific binding of contaminant proteins did not occur on the gold chip surface. It is expected that the approach used here to detect affinity-tagged recombinant proteins using an SPR imaging technique could be used as a powerful tool for the analyses of a number of proteins in a high-throughput mode.

An Immunocytochemical Study on Storage Proteins of Ginseng Seed - Tris Buffer Soluble Protein - (인삼 종자의 저장단백질에 관한 면역 세포화학적 연구 - Tris 완충액 가용성 단백질 -)

  • Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.74-84
    • /
    • 1989
  • Buffer soluble storage proteins of ginseng seed have been localized by electron microscopy using post-embedding immunocytochemical gold labelling technique. Major components of the storage proteins were revealed to be storage protein-1($SP_{1}$, MW 160,000) and storage protein-2($SP_{2}$, MW 70,000). Both of the storage proteins are glycoproteins. Anti-$SP_{1}$ and anti-$SP_{2}$ from rabbit, against $SP_1$ and $SP_2$, respectively, reacted on sections of ginseng endosperm tissue embedded in Spurr's epoxy resin. The rabbit antibodies were visualized indirectly by reaction with protein A labelled with colloidal gold. Both storage proteins were found to be accumulated together in the same protein bodies, but their relative contents are not equal.

  • PDF

Surface Plasmon Resonance Immunosensor for Detection of Legionella pneumophila

  • Oh, Byung-Keun;Lee, Woochang;Bae, Young-Min;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • An immunosensor based on surface plasmon resonance (SPR) onto a protein G layer by Self-assembly technique was developed for detection of Legionella pneumophila. The protein G layer by self-assembly technique was fabricated on a gold (Au) surface by adsorbing the 11-mercaptoundecanoic acid (MUA) and an activation process for the chemical binding of the free amino (-NH$_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of the protein G layer by self-assembly technique on the Au Substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The Surface topographies of the fabricated thin films on an Au substrate were also analyzed by using an atomic force microscope (AFM). Consequently, an immunosensor for the detection of L. pneumophila using SPR was developed with a detection limit of up to 10$^2$CFU per mL.

Immunohistochemical studies of glucagon and somatostatin in the pancreas of the Korean tree squirrel. Sciurus vlugar is corea (청설모췌장의 glucageon과 somatostatin 세포의 면역조직학적 연구)

  • Lee, Hyeung-sik;Lee, Jae-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.573-577
    • /
    • 1993
  • The pancreatic endocrine cells, glucagon and somatostation, of the Korean tree squirrel. Sciurus vulgais corea, were investigation by means of light and electron microscopic immunohistochemistry using the PAP and protein A-gold techniques. Glucagon-immunoreactive cells were distributed the periphery and occasinonaly central region of the pancreatic islets. Also, isolated cell was found between the pancreatic ancinar cells. The glucagon cells contraine granules with a diameter of 240~320nm and the electron dense core usually surrounded by a halo of less dense granular material. The core of granule was labelled strongly with gold particles. Somatostatin-immunoreactive cells were weakly stained in scattered along the peripheral pancreatic islets and were distributed as singly or small groups with in the pancreatic acinar cells. The somatostatin cells were spherical with a diameter of 250~275nm, moderately electron opaque (Gold particles were mostly demonstrated on the entire granule.

  • PDF

Development of Protein Chip for Diagnosis of Chlamydophia Pneumoniae (단백질 칩을 이용한 클라미디아 폐렴의 진단)

  • Kim, Woo Jin;Lee, Hui Young;Lee, Seung-Joon;Jung, Se-Hui;Yuk, Jong Seol;Ha, Kwon-Soo;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.412-418
    • /
    • 2006
  • Background; The diagnosis of chlamydial infection is based on serology. The current gold standard of diagnosis is MIF(microimmunofluorescence), but this modality is subjective and time-consuming. Protein microarray with using a SPR(surface plasmon resonance) sensor has recently been suggested as a method for detecting infection. For developing a protein chip to diagnose chlamydial infection, EBs(elementary bodies) were immobilized on a gold chip and the interaction between an antibody for Chlamydophila pneumoniae and the EBs(elementary bodies) immobilized on the surface of the gold chip was measured by using an SPR sensor. Methods; For the surface antigen, the EBs of Chlamydophila pneumoniae LKK1 were purified. Charged arrays were prepared by using PDDA(polydiallyldimethylammonium chloride) which has a positive charge. After immobilization of the chlamydial EBs on the PDDA surface, the investigation of the surface was done with using atomic force microscopy. After the antibody for C. pneumoniae was applied on chip, we monitored the SPR wavelength-shift to detect any antigen-antibody interaction with using a self-assembled SPR sensor. Results; The chlamydial EBs on the positively charged PDDA were visible on the surface with using atomic force microscopy. The SPR wavelength increased after interaction of antibody for C. pneumoniae with the EBs immobilized on charged gold surface. The wavelength-shift was correlated with the concentration of antigens. Conclusion; The surface immobilization of EBs on the gold surface with the charged arrays was identified and the antigen-antibody interaction on the gold chip was detected via the SPR sensor. Further investigations are needed to apply this technique to the clinical field.

Detection of IgG Using Thiolated Protein G Modified SPR Sensor Chip (Thiolated protein G로 개질된 SPR 센서 칩을 이용한 IgG 검출)

  • Sin, Eun-Jung;Lee, Yeon-Kyung;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.434-438
    • /
    • 2011
  • A portable surface plasmon resonance(SPR) based immunosensor using thiolated protein G and protein G was developed for the detection of immunoglobulin G(IgG). The protein G has specific affinity with Fc fragment of IgG and was thiolated by 2-Iminothiolane for introduction of thiol groups. Anti-IgG, bovine serum albumin(BSA), and IgG have been sequently injected after surface modification of gold sensor chip with protein G and thiolated protein G. The output signal was increased with the injection of each protein and the actual signal was measured by subtracting signal of reference channel from signal of sample injected channel. The experimental results showed the higher detection capability of IgG using thiolated protein G compared with protein G. From these results, we can conclude that the current surface modification technique and the portable SPR sensor system can be applied to various immunosensors for diagnosis.

Antibody Layer Fabrication for Protein Chip to Detect E. coli O157:H7, Using Microcontact Printing Technique

  • KIM HUN-SOO;BAE YOUNG-MIN;KIM YOUNG-KEE;OH BYUNG-KEUN;CHOI JEONG-WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.141-144
    • /
    • 2006
  • An antibody layer was fabricated to detect Escherichia coli O157:H7. The micropattern of 16-mercaptohexadecanoic acid (16-MHDA) as alkylthiolate was formed on the gold surface by using the PDMS stamp with microcontact printing $({\mu}CP)$ techniques. In order to form antibody patterns on the template, protein G was chemically bound to the 16-MHDA patterns, and antibody was adsorbed on a self-assembled protein G layer. The formation of the 16-MHDA micropattern, self-assembled protein G layer and antibody pattern on Au substrate was confirmed by surface plasmon resonance (SPR) spectroscopy. Finally, the micropatterning method was applied to fabricate the antibody probe for detection of E. coli O157:H7, and monitoring of antigen by using this probe was successfully achieved.

Nano-scale Probe Fabrication Using Self-assembly Technique and Application to Detection of Escherichia coli O157:H7

  • Oh, Byung-Keun;Lee, Woochang;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.227-232
    • /
    • 2003
  • A self-assembled monolayer of protein G was fabricated to develop an immunosensor based on surface plasmon resonance (SPR), thereby improving the performance of the antibodybased biosensor through immobilizing the antibody molecules (lgG). As such, 11-mercaptoundecanoic acid (11-MUA) was adsorbed on a gold (Au) support, while the non-reactive hydrophilic surface was changed through substituting the carboxylic acid group (-COOH) in the 11-MUA molecule using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholide (EDAC). The formation of the self-assembled protein G layer on the Au substrate and binding of the antibody and antigen were investigated using SPR spectroscopy, while the surface topographies of the fabricated thin films were analyzed using atomic force microscopy (AFM). A fabricated monoclonal antibody (Mab) layer was applied for detecting E. coli O157:H7. As a result, a linear relationship was achieved between the pathogen concentration and the SPR angle shift, plus the detection limit was enhanced up to 10$^2$ CFU/mL.