단백질 칩을 이용한 클라미디아 폐렴의 진단

Development of Protein Chip for Diagnosis of Chlamydophia Pneumoniae

  • 김우진 (강원대학교 의과대학 내과학 교실) ;
  • 이희영 (강원대학교 의과대학 내과학 교실) ;
  • 이승준 (강원대학교 의과대학 내과학 교실) ;
  • 정세희 (강원대학교 의과대학 생화학교실) ;
  • 육종설 (강원대학교 의과대학 생화학교실) ;
  • 하권수 (강원대학교 의과대학 생화학교실) ;
  • 정기석 (한림대학교 의과대학 내과학교실)
  • Kim, Woo Jin (Department of Internal Medicine, College of Medicine, Kangwon National University) ;
  • Lee, Hui Young (Department of Internal Medicine, College of Medicine, Kangwon National University) ;
  • Lee, Seung-Joon (Department of Internal Medicine, College of Medicine, Kangwon National University) ;
  • Jung, Se-Hui (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University) ;
  • Yuk, Jong Seol (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University) ;
  • Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University) ;
  • Jung, Ki-Suck (Department of Internal Medicine, College of Medicine, Hallym University)
  • 투고 : 2006.03.10
  • 심사 : 2006.04.17
  • 발행 : 2006.04.30

초록

연구배경 : 클라미디아 감염의 진단은 혈청검사로 이루어진다. 현재 표준 방법은 MIF(microimmunofluorescence)이나 이 방법은 주관적이고 시간이 많이 걸리는 단점이 있다. 최근을 SPR(surface plasmon resonance) 센서를 이용한 단백질 칩이 감염의 새로운 진단 방법으로 제시되고 있다. 클라미디아 감염의 진단을 위한 단백질 칩 개발을 위하여 금 칩 표면에 세균을 고정하고 클라미디아 균에 대한 항체와 표면 위 세균과의 반응을 SPR 센서를 이용하여 측정하고자 하였다. 방법 : 표면 항원으로 배양한 Chlamydophila pneumoniae LKK1의 EB를 정제하였다. 양전하를 띤 PDDA (polydiallyldimethylammonium chloride)를 이용하여 전하를 이용한 단백질 칩을 제작하였다. 클라미디아 균을 고정시킨 후에 atomic force microscopy를 이용하여 표면을 관찰하였다. 클라미디아 균에 대한 항체를 투여하고 나서 자체 제작한 SPR 센서를 이용하여 항원 항체 반응을 SPR 파장 변화로 측정하였다. 결과 : 양전하를 띤 PDDA 표면위에서 클라미디아 균이 고정되었음을 확인 하였다. 그리고, 항체를 투여한 후에 SPR 파장의 증가를 확인하였다. 파장 변화는 항원의 농도와 관련이 있었다. 결론 : 전하를 이용하여 클라미디아 폐렴균의 EB를 단백질 칩에 고정하였고, 단백질 칩 위에서의 항원 항체 반응을 확인하였다. 비정형 폐렴의 진단에 SPR 센서가 기여할 수 있을 것으로 사료되나, 실제 임상 시료에의 적용을 위해서는 좀더 연구가 필요할 것으로 사료된다.

Background; The diagnosis of chlamydial infection is based on serology. The current gold standard of diagnosis is MIF(microimmunofluorescence), but this modality is subjective and time-consuming. Protein microarray with using a SPR(surface plasmon resonance) sensor has recently been suggested as a method for detecting infection. For developing a protein chip to diagnose chlamydial infection, EBs(elementary bodies) were immobilized on a gold chip and the interaction between an antibody for Chlamydophila pneumoniae and the EBs(elementary bodies) immobilized on the surface of the gold chip was measured by using an SPR sensor. Methods; For the surface antigen, the EBs of Chlamydophila pneumoniae LKK1 were purified. Charged arrays were prepared by using PDDA(polydiallyldimethylammonium chloride) which has a positive charge. After immobilization of the chlamydial EBs on the PDDA surface, the investigation of the surface was done with using atomic force microscopy. After the antibody for C. pneumoniae was applied on chip, we monitored the SPR wavelength-shift to detect any antigen-antibody interaction with using a self-assembled SPR sensor. Results; The chlamydial EBs on the positively charged PDDA were visible on the surface with using atomic force microscopy. The SPR wavelength increased after interaction of antibody for C. pneumoniae with the EBs immobilized on charged gold surface. The wavelength-shift was correlated with the concentration of antigens. Conclusion; The surface immobilization of EBs on the gold surface with the charged arrays was identified and the antigen-antibody interaction on the gold chip was detected via the SPR sensor. Further investigations are needed to apply this technique to the clinical field.

키워드

참고문헌

  1. File TM Jr, Tan JS, Plouffe JF. The role of atypical pathogens: Mycoplasma pneumoniae, Chlamydia pneumoniae and Legionella pneumophila in respiratory infection. Infect Dis Clin North Am 1998;12:569-92 https://doi.org/10.1016/S0891-5520(05)70199-9
  2. Lee SJ, Lee MG, Jeon MJ, Jung KS, Lee H, Kishimoto T. Atypical pathogens in adult patients admitted with community-acquired pneumonia in Korea. Jpn J Infect Dis 2002;55:157-9
  3. Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999;283:1335-9 https://doi.org/10.1126/science.283.5406.1335
  4. Falck G, Gnarpe J, Hansson LO, Svardsudd K, Gnarpe H. Comparison of individuals with and without specific IgA antibodies to Chlamydia pneumoniae. Chest 2002;122:1587-93 https://doi.org/10.1378/chest.122.5.1587
  5. Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, Guarner J, et al. Standardizing Chlamydia pneumoniae assays: recommendations from the centers for disease control and prevention and the laboratory centre for disease control. Clin Infect Dis 2001;33:492-503 https://doi.org/10.1086/322632
  6. File TM. Community-acquired pneumonia. Lancet 2003;362:1991-2001 https://doi.org/10.1016/S0140-6736(03)15021-0
  7. Campbell CJ, Ghazal P. Molecular signature for diagnosis of infection: application of microarray technology. J Appl Microbiol 2004;96:18-23 https://doi.org/10.1046/j.1365-2672.2003.02112.x
  8. Mezzasoma L, Bacarese-Hamilton T, di Cristana M, Rossi R, Bistoni F, Crisanti A. Antigen microarrays for serodiagnosis of infectious diseases, Clin Chem 2002;48:121-30
  9. Jongerius-Gortemarker BG, Goverde RL, van Knapen F, Bergwerff AA. Surface plasmon resonance detection of serum antibodies against Salmonella enteritidis and Salmonella typhimurium. J Immunol Methods 2002;266:33-44 https://doi.org/10.1016/S0022-1759(02)00102-3
  10. Bokken GC, Corbee RJ, van Knapen F, Bergwerff AA. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol Lett 2003;222:75-82 https://doi.org/10.1016/S0378-1097(03)00250-7
  11. MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000;289:1760-3
  12. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol 2003;7:55-63 https://doi.org/10.1016/S1367-5931(02)00005-4
  13. Lee SJ, Nam EC, Won J, Park WS, Kim WJ, Han SS, et al. Characterization of the first Korean isolate of a Chlamydia pneumoniae strain. Jpn J Infect Dis 2003;56:62-4
  14. Yuk JS, Yi SJ, Lee HG, Kim YM, Ha KS, Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips. Sens Actuators B Chem 2003;94:161-4 https://doi.org/10.1016/S0925-4005(03)00345-9
  15. Hermann C, Gueinzius K, Oehme A, von Aulock S, Straube E, Hartung T. Comparison of quantitative and semiquantitative ELISA for IgG against C. pneumoniae to a MIF test for use with patients with respiratory tract infections. J Clin Microbiol 2004; 42:2476-9 https://doi.org/10.1128/JCM.42.6.2476-2479.2004
  16. Lee HY, Kim WJ. ELISA for antibodies against Chlamydia pneumoniae compared with MIF test with patients with chronic cough. Tuberc Respir Dis 2005;59:47-52 https://doi.org/10.4046/trd.2005.59.1.47
  17. Menendez R, Cordoba J, de la Cuadra P, Cremades MJ, Lopez-Hontagas JL, Salavert M, et al. Value of the polymerase chain reaction assay in noninvasive respiratory samples for diagnosis of communityacquired pneumonia. Am J Respir Crit Care Med 1999;159:1868-73 https://doi.org/10.1164/ajrccm.159.6.9807070
  18. Yuk JS, Ha KS. Proteomic applications of surface plasmon resonance biosensor: analysis of protein arrays. Exp Mol Med 2005;37:1-10 https://doi.org/10.1038/emm.2005.1
  19. Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, et al. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 2002;99:15687-92 https://doi.org/10.1073/pnas.242579699
  20. Lu DD, Chen SH, Zhang SM, Zhang ML, Zhang W, Bo XC, et al. Screening of specific antigens for SARS clinical diagnosis using a protein microarray. Analyst 2005;130:474-82 https://doi.org/10.1039/b415888a
  21. Sachse K, Hotzel H, Slickers P, Ellinger T, Ehricht R. DNA microarray-based detection and identification of Chlamydia and Chlamydophila spp. Mol Cell Probes 2005;19:41-50 https://doi.org/10.1016/j.mcp.2004.09.005
  22. Angenendt P, Glokler J, Murphy D, Lehrach H, Cahill DJ. Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 2002;309:253-60 https://doi.org/10.1016/S0003-2697(02)00257-9
  23. Vance DW Jr, Hatch TP. Surface properties of Chlamydia psittaci. Infect Immun 1980;29:175-80
  24. Yi SJ, Yuk JS, Jung SH, Zhavnerko GK, Kim YM, Ha KS. Investigation of selection protein immobilization on charged protein array by wavelength interrogation- based SPR sensor. Mol Cells 2003;15:333-40
  25. Yuk JS, Jung SH, Jung JW, Hong DG, Han JA, Kim YM, et al. Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor. Proteomics 2004;4: 3468-76 https://doi.org/10.1002/pmic.200400879
  26. McDonnell JM. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol 2001; 5:572-7 https://doi.org/10.1016/S1367-5931(00)00251-9
  27. Hifumi E, Kubota N, Niimi Y, Shimizu K, Egashira N, Uda T. Elimination of ingredients effect to improve the detection of anti HIV-1 p24 antibody in human serum using SPR apparatus. Anal Sci 2002;18:863-7 https://doi.org/10.2116/analsci.18.863