• Title/Summary/Keyword: proposed design equation

Search Result 1,136, Processing Time 0.03 seconds

Study on the Evaluation of End Bearing Capacity of Pre-Bored Piles for the SPT-N value (SPT-N값에 따른 매입말뚝의 선단지지력 특성 연구)

  • Seo, Dong-Nam;Choi, Sang-Ho;Kim, Jin-Sik;Kim, Seong-Cheol;Lee, Dong-Hyeon;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.133-134
    • /
    • 2020
  • The equation of end bearing capacity is applied differently depending on the type of pile, construction method, and load characteristics considering the construction standards. The bearing capacity equation of the design standard is presented in various ways according to the design conditions such as construction method and ground condition, etc. but, It does not reflect the ground strength according to the SPT-N value of weathered rock. This study analyzed the trend of allowable tip bearing capacity by pile diameter through about 480 dynamic loading tests conducted for the construction/quality management of piles for the last 6 years since 2015. The equation for the ultimate end bearing capacity per unit area according to the SPT-N value is presented. The proposed formula of ultimate end bearing capacity per unit area can be applied in the range of 15,000kN/m2 to 30,000kN/m2. The proposed formula, which complements the existing formula, enables pile design and construction/quality management.

  • PDF

Direct Control of Displacement Using Displacement and Resistance Force Contribution Factor (변위 및 내력기여도계수를 이용한 정량적 변위 제어)

  • Kim, Young-Min;Kim, Chee-Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.91-100
    • /
    • 2005
  • The paper presents a direct method for the diplacement control and stiffness redesign using displacement and response force contribution factors. At first, these two kinds of factors are derived and the relationship between them is examined. An equation to evaluate the change of displacement according to the change of each member stiffness is proposed. For the statically determinate structures, the proposed equation gives the exact solution with no approximation. But it has some error in case of statically indeterminate structures because the redistribution of response forces is neglected in the equation. However, the equation may be very useful even for statically indeterminate structures because it provides the relationship between the member stiffness and the global displacement. The proposed method is expected to be useful for the displacement control of large space or hi-rise building structures where the stiffness design governs the design result.

  • PDF

Study on the Design of Upper Deck Hatch Corner Insert Plates of Large Container Carriers (대형 컨테이너선 상갑판 해치코너부 보강판의 설계에 관한 연구)

  • Park, Sung-Gu;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.331-339
    • /
    • 2006
  • The objective of this paper is to calculate the fatigue strength for upper deck hatch corner insert plate of large container carriers without wave load analysis and global finite element analysis at the initial design stage. Wave load analysis and global F.E. analysis for three container carriers have been performed by GL(Germanischer Lloyd) procedure to propose the equation for hatch corner stress range which is the important factor in fatigue strength calculation. Considering the restraining effect of bulkhead, three types of equation, that is, single tight bulkhead, double tight bulkhead and support bulkhead have been proposed. Using the proposed equations, a simplified fatigue analysis based on GL rules has been performed for two container carriers of which fatigue strength analysis was carried out by GL. From the comparison between fatigue strength result of using the proposed equations and that of GL, it has been found that proposed stress range equations are useful for scantling of upper deck hatch corner insert plates for over 8,000 TEU class container carriers.

Proposed Limit State Design Method for Encased Composite Columns (매립형 합성기둥의 한계상태설계법 제안)

  • Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.523-533
    • /
    • 1997
  • Current limit state design method for encased composite columns contains irrational and uncertain design equations in defining section and material properties of composite members. Through investigating previous research used in formulating the design equation, this paper explores the irrationality and uncertainty such as 1) transformation of yield stress and elastic modulus for composite section, 2) an equation influencing buckling strength in terms of area rather than moment of inertia, and 3) selection of larger radius of gyration between steel and concrete sections. Improving the design equations this paper proposes two design methods which can be directly used in practical design.

  • PDF

Modified Equation for Ductility Demand Based Transverse Confining Reinforcement (요구연성도에 따른 횡방향 심부구속철근량 산정식 수정)

  • Son, Hyeok-Soo;Lee, Jae-Hoon;Suh, Suk-Koo;Oh, Myung-Seok;Yoon, Cheol-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.7-8
    • /
    • 2009
  • In this research, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement for reinforced concrete columns. And, also, an equation for calculating the amount of confining reinforcement was proposed for reasonable seismic design. In addition, appropriateness and safety of the proposed equation were examined based on the various experimental results performed at home and abroad.

  • PDF

A Study of Flow Characteristics using Reynold's Equation on Mass Flow Controller Actuated by Piezoelectric Material (압전체로 구동되는 질량흐름 제어기에서 레이놀즈 방정식을 이용한 유량 특성 연구)

  • Lee, S.K.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.69-73
    • /
    • 2003
  • In this paper, the relation between displacement of piezoelectric disk and electric field was proposed. From Navier-Stokes equation and Reynold's equation, the relation between flow and gap of plate was determined. This models were further verified by experiments. Based on theoretical study and experimental verification, the proposed model between flow rate and voltage can be used in the design of mass flow controller in gas supplying system.

  • PDF

Live Load Distribution in Prestressed Concrete I-Girder Bridges (I형 프리스트레스트 콘크리트 거더교의 활하중 분배)

  • Kim, Kwang-Yang;Kang, Dae-Hui;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.288-293
    • /
    • 2008
  • The standard prestressed concrete I-girder bridge (PSC I-girder bridge) is one of the most prevalent types for small and medium bridges in Korea. When determining the member forces in a section to assess the safety of girder in this type of bridge, the general practice is to use the simplified practical equations or the live load distribution factors proposed in design standards rather than the precise analysis through the finite element method or so. Meanwhile, the live load distribution factors currently used in Korean design practice are just a reflection of overseas research results or design standards without alterations. Therefore, it is necessary to develop an equation of the live load distribution factors fit for the design conditions of Korea, considering the standardized section of standard PSC I-girder bridges and the design strength of concrete. In this study, to develop an equation of the live load distribution factors, a parametric analysis and sensitivity analysis were carried out on the parameters such as width of bridge, span length, girder spacing, width of traffic lane, etc. Then, an equation of live load distribution factors was developed through the multiple linear regression analysis on the results of parametric analysis. When the actual practice engineers design a bridge with the equation of live load distribution factors developed here, they will determine the design of member forces ensuring the appropriate safety rate more easily. Moreover, in the preliminary design, this model is expected to save much time for the repetitive design to improve the structural efficiency of PSC I-girder bridges.

  • PDF

Configuration sensitivity analysis of mechanical dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.112-119
    • /
    • 2001
  • Design sensitivity is an important is an important device in improving a mechanical system design. A continuum design consists of the shape and orientation design. This research develops the shape and orientation design sensitivity method. The configura-tion design variables of multibody systems define the shape and orientation changes. The equations of motion are directly differentiated to obtain the governing equations for the design sensitivity. The governing equation of the design sensitivity is formulated as an over determined differential algebraic equation and treated as ordinary differential equations on mani-folds. The material derivative of a domain functional is performed to obtain the sensitivity due to shape and orientation changes. The configuration design sensitivities of a fly-ball governor system and a spatial four bar mechanism are obtained using the proposed method and are validated against those obtained from the finite difference method.

  • PDF

Underwater Acoustic Lens Design Using Topology Optimization (위상최적화를 이용한 수중음향렌즈의 설계)

  • Jang, Gang-Won;Tran, Quang Dat;Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Seung Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

A Study on the Improvement of Bearing Capacity Prediction Equation for Auger-drilled Piling (매입말뚝공법의 지지력 예측식 개선에 관한 연구)

  • 최도웅;한병권;서영화;조성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.382-389
    • /
    • 2002
  • Recently, auger-drilled piling has been widely used in urban area to reduce the air pollution and noise. But this construction method that its basic theory was introduced from Japan may be changed depending on the each piling company and construction field condition. Therefore, the design code and management method for auger-drilled piling is not defined yet. Especially, the lack of research on the bearing capacity of auger-drilled piling leads to the absence of rational bearing capacity prediction equation. This paper presents the optimum design code and economical construction method of the auger-drilled piling by proposing the new bearing capacity prediction equation based on the site specific soil types and construction conditions. In this paper, existing bearing capacity prediction equations and current pile load tests were compared. And the end bearing capacity and skin friction characteristics were also analyzed by comparing the results of CAPWAP. From the results of analysis, a reliable bearing capacity prediction equation considered soil types is proposed.

  • PDF