• Title/Summary/Keyword: proportional hazards models

Search Result 70, Processing Time 0.026 seconds

Local Asymptotic Normality for Independent Not Identically Distributed Observations in Semiparametric Models

  • Park, Byeong U.;Jeon, Jong W.;Song, Moon S.;Kim, Woo C.
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 1991
  • A set of conditions ensuring local asymptotic normality for independent but not necessarily identically distributed observations in semiparametric models is presented here. The conditions are turned out to be more direct and easier to verify than those of Oosterhoff and van Zwet(1979) in semiparametric models. Examples considered include the simple linear regression model and Cox's proportional hazards model without censoring where the covariates are not random.

  • PDF

A prediction model of low back pain risk: a population based cohort study in Korea

  • Mukasa, David;Sung, Joohon
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.153-165
    • /
    • 2020
  • Background: Well-validated risk prediction models help to identify individuals at high risk of diseases and suggest preventive measures. A recent systematic review reported lack of validated prediction models for low back pain (LBP). We aimed to develop prediction models to estimate the 8-year risk of developing LBP and its recurrence. Methods: A population based prospective cohort study using data from 435,968 participants in the National Health Insurance Service-National Sample Cohort enrolled from 2002 to 2010. We used Cox proportional hazards models. Results: During median follow-up period of 8.4 years, there were 143,396 (32.9%) first onset LBP cases. The prediction model of first onset consisted of age, sex, income grade, alcohol consumption, physical exercise, body mass index (BMI), total cholesterol, blood pressure, and medical history of diseases. The model of 5-year recurrence risk was comprised of age, sex, income grade, BMI, length of prescription, and medical history of diseases. The Harrell's C-statistic was 0.812 (95% confidence interval [CI], 0.804-0.820) and 0.916 (95% CI, 0.907-0.924) in validation cohorts of LBP onset and recurrence models, respectively. Age, disc degeneration, and sex conferred the highest risk points for onset, whereas age, spondylolisthesis, and disc degeneration conferred the highest risk for recurrence. Conclusions: LBP risk prediction models and simplified risk scores have been developed and validated using data from general medical practice. This study also offers an opportunity for external validation and updating of the models by incorporating other risk predictors in other settings, especially in this era of precision medicine.

Time-Dependent Effects of Prognostic Factors in Advanced Gastric Cancer Patients

  • Kwon, Jin-Ok;Jin, Sung-Ho;Min, Jae-Seok;Kim, Min-Suk;Lee, Hae-Won;Park, Sunhoo;Yu, Hang-Jong;Bang, Ho-Yoon;Lee, Jong-Inn
    • Journal of Gastric Cancer
    • /
    • v.15 no.4
    • /
    • pp.238-245
    • /
    • 2015
  • Purpose: This study aimed to identify time-dependent prognostic factors and demonstrate the time-dependent effects of important prognostic factors in patients with advanced gastric cancer (AGC). Materials and Methods: We retrospectively evaluated 3,653 patients with AGC who underwent curative standard gastrectomy between 1991 and 2005 at the Korea Cancer Center Hospital. Multivariate survival analysis with Cox proportional hazards regression was used in the analysis. A non-proportionality test based on the Schoenfeld residuals (also known as partial residuals) was performed, and scaled Schoenfeld residuals were plotted over time for each covariate. Results: The multivariate analysis revealed that sex, depth of invasion, metastatic lymph node (LN) ratio, tumor size, and chemotherapy were time-dependent covariates violating the proportional hazards assumption. The prognostic effects (i.e., log of hazard ratio [LHR]) of the time-dependent covariates changed over time during follow-up, and the effects generally diminished with low slope (e.g., depth of invasion and tumor size), with gentle slope (e.g., metastatic LN ratio), or with steep slope (e.g., chemotherapy). Meanwhile, the LHR functions of some covariates (e.g., sex) crossed the zero reference line from positive (i.e., bad prognosis) to negative (i.e., good prognosis). Conclusions: The time-dependent effects of the prognostic factors of AGC are clearly demonstrated in this study. We can suggest that time-dependent effects are not an uncommon phenomenon among prognostic factors of AGC.

A SIMULATION STUDY OF BAYESIAN PROPORTIONAL HAZARDS MODELS WITH THE BETA PROCESS PRIOR

  • Lee, Jae-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.3
    • /
    • pp.235-244
    • /
    • 2005
  • In recent years, theoretical properties of Bayesian nonparametric survival models have been studied and the conclusion is that although there are pathological cases the popular prior processes have the desired asymptotic properties, namely, the posterior consistency and the Bernstein-von Mises theorem. In this study, through a simulation experiment, we study the finite sample properties of the Bayes estimator and compare it with the frequentist estimators. To our surprise, we conclude that in most situations except that the prior is highly concentrated at the true parameter value, the Bayes estimator performs worse than the frequentist estimators.

A Comparison Study of the Test for Right Censored and Grouped Data

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.313-320
    • /
    • 2015
  • In this research, we compare the efficiency of two test procedures proposed by Prentice and Gloeckler (1978) and Park and Hong (2009) for grouped data with possible right censored observations. Both test statistics were derived using the likelihood ratio principle, but under different semi-parametric models. We review the two statistics with asymptotic normality and consider obtaining empirical powers through a simulation study. The simulation study considers two types of models the location translation model and the scale model. We discuss some interesting features related to the grouped data and obtain null distribution functions with a re-sampling method. Finally we indicate topics for future research.

A Statistical Methodology to Estimate the Economical Replacement Time of Water Pipes (상수관로의 경제적 교체시기를 산정하기 위한 통계적 방법론)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.457-464
    • /
    • 2009
  • This paper proposes methodologies for analyzing the accuracy of the proportional hazards model in predicting consecutive break times of water mains and estimating the time interval for economical water main replacement. By using the survival functions that are based on the proportional hazards models a criterion for the prediction of the consecutive pipe breaks is determined so that the prediction errors are minimized. The criterion to predict pipe break times are determined as the survival probability of 0.70 and only the models for the third through the seventh break are analyzed to be reliable for predicting break times for the case study pipes. Subsequently, the criterion and the estimated lower and upper bound survival functions of consecutive breaks are used in predicting the lower and upper bounds of the 95% confidence interval of future break times of an example water main. Two General Pipe Break Prediction Models(GPBMs) are estimated for an example pipe using the two series of recorded and predicted lower and upper bound break times. The threshold break rate is coupled with the two GPBMs and solved for time to obtain the economical replacement time interval.

Bayesian Variable Selection in the Proportional Hazard Model with Application to DNA Microarray Data

  • Lee, Kyeon-Eun;Mallick, Bani K.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.357-360
    • /
    • 2005
  • In this paper we consider the well-known semiparametric proportional hazards (PH) models for survival analysis. These models are usually used with few covariates and many observations (subjects). But, for a typical setting of gene expression data from DNA microarray, we need to consider the case where the number of covariates p exceeds the number of samples n. For a given vector of response values which are times to event (death or censored times) and p gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. This approach enable us to estimate the survival curve when n < < p. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. The approach creates additional flexibility by allowing the imposition of constraints, such as bounding the dimension via a prior, which in effect works as a penalty. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method. We demonstrate the use of the methodology to diffuse large B-cell lymphoma (DLBCL) complementary DNA(cDNA) data.

  • PDF

Prognostic Factors for Survival in Patients with Breast Cancer Referred to Omitted Cancer Research Center in Iran

  • Baghestani, Ahmad Reza;Shahmirzalou, Parviz;Zayeri, Farid;Akbari, Mohammad Esmaeil;Hadizadeh, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5081-5084
    • /
    • 2015
  • Background: Breast cancer is a malignant tumor that starts from cells of the breast and is seen mainly in women. It's the most common cancer in women worldwide and is a major threat to health. The purpose of this study was to fit a Cox proportional hazards model for prediction and determination of years of survival in Iranian patients. Materials and Methods: A total of 366 patients with breast cancer in the Cancer Research Center were included in the study. A Cox proportional hazard model was used with variables such as tumor grade, number of removed positive lymph nodes, human epidermal growth factor receptor 2 (HER2) expression and several other variables. Kaplan-Meier curves were plotted and multi-years of survival were evaluated. Results: The mean age of patients was 48.1 years. Consumption of fatty foods (p=0.033), recurrence (p<0.001), tumor grade (p=0.046) and age (p=0.017) were significant variables. The overall 1- year, 3-year and 5-year survival rates were found to be 93%, 75% and 52%. Conclusions: Use of covariates and the Cox proportional hazard model are effective in predicting the survival of individuals and this model distinguished 4 effective factors in the survival of patients.

Generating censored data from Cox proportional hazards models (Cox 비례위험모형을 따르는 중도절단자료 생성)

  • Kim, Ji-Hyun;Kim, Bongseong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • Simulations are important for survival analyses that deal with censored data. Cox models are widely used in survival analyses, therefore, we investigate how to generate censored data that can simulate the Cox model. Bender et al. (Statistics in Medicine, 24, 1713-1723, 2005) provided a parametric method for generating survival times, but we need to generate censoring times as well as survival times to simulate the censored data. In addition to the parametric method for generating censored data, a nonparametric method is also proposed and applied to a real data set.

Fitting competing risks models using medical big data from tuberculosis patients (전국 결핵 신환자 의료빅데이터를 이용한 경쟁위험모형 적합)

  • Kim, Gyeong Dae;Noh, Maeng Seok;Kim, Chang Hoon;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.529-538
    • /
    • 2018
  • Tuberculosis causes high morbidity and mortality. However, Korea still has the highest tuberculosis (TB) incidence and mortality among OECD countries despite decreasing incidence and mortality due to the development of modern medicine. Korea has now implemented various policy projects to prevent and control tuberculosis. This study analyzes the effects of public-private mix (PPM) tuberculosis control program on treatment outcomes and identifies the factors that affecting the success of TB treatment. We analyzed 130,000 new tuberculosis patient cohort from 2012 to 2015 using data of tuberculosis patient reports managed by the Disease Control Headquarters. A cumulative incidence function (CIF) compared the cumulative treatment success rates for each factor. We compared the results of the analysis using two popular types of competition risk models (cause-specific Cox's proportional hazards model and subdistribution hazard model) that account for the main event of interest (treatment success) and competing events (death).