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A SIMULATION STUDY OF BAYESIAN PROPORTIONAL
HAZARDS MODELS WITH THE BETA PROCESS PRIOR |

JAEYONG LEE!

ABSTRACT

In recent years, theoretical properties of Bayesian nonparametric survival
models have been studied and the conclusion is that although there are
pathological cases the popular prior processes have the desired asymptotic
properties, namely, the posterior consistency and the Bernstein-von Mises
theorem. In this study, through a simulation experiment, we study the
finite sample properties of the Bayes estimator and compare it with the
frequentist estimators. To our surprise, we conclude that in most situations
except that the prior is highly concentrated at the true parameter value, the
Bayes estimator performs worse than the frequentist estimators. '
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1. INTRODUCTION

In recent years, asymptotic properties of Bayesian nonparametric survival
models have been studied. In particular, with the neutral to the right (NTR)
process prior on the unknown distribution, the sufficient conditions of the pos-
terior consistency (Kim and Lee 2001)and Bernstein-von Mises theorem were
obtained (Kim and Lee 2004).The essence of these studies is that not all the
NTR process priors have the desired asymptotic properties, but all of the pop-
ular nonparametric priors, Dirichlet process, beta process and gamma process
have the desired asymptotic properties, i.e. the posterior with these priors have
compatible asymptotic properties with the frequentiest counter parts.

While the theoretical properties of Bayesian nonparametric survival model are
studied, small sample performance of the Bayesian nonparametric survival model
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has not been studied. In this study, we consider the proportional hazard model
as the testbed. With the beta process (Hjort 1990),which is the most popular
prior process in the survival model, on the baseline distribution, we study the
small sample behaviour of the Bayes estimator and compare with that of the
frequentist estimators in a simulation study. Especially, we focus on the behavior
of the posterior of the regression coefficients. Similar study has been done in Kim
and Ibrahim (2000),but their model is different from ours.

To our surprise, our conclusion of this simulation experiment is that although
asymptotically the performance of the Bayes estimator is equivalent to that of
the frequentist estimators, the story is quite different in small sample situations.
In almost all situations except that the prior is highly concentrated at the true
distribution, the Bayes estimator performs worse than the MLE.

In small sample problems, the common Bayesian folklore is that the Bayes
estimator performs much better than the frequentist estimators. The rationale
behind this folklore lies at the asymptotic approximation of the sampling distri-
bution. Usually the frequentist inference relies on the asymptotic approximation
of the sampling distribution, which is often very poor when the sample size is
small. On the other hand, the Bayesian inference is exact whether the sample
size is small or large. Because of this, it is commonly believed that, although the
posterior and sampling distribution are different entities, the Bayesian procedure
performs better than the frequentist procedures even with the frequentist criteria.
However, to our surprise, in thie proportional hazard model, our simulation study
shows that the Bayes estimator performs worse than the frequentist estimators
in almost all situations.

This paper is organized as follows. In section 2, we describe in detail the
components of Bayesian nonparametric survival model: the model, prior, poste- -
rior and computation method. We report the simulation result in section 3 and
discuss it.

2. BAYESIAN PROPORTIONAL HAZARD MODEL

2.1. Proportional Hazard Model

Let Xi,...,X, be survival times with covariates Zi,...,Z, € RP. In the
proportional hazard model we assume the distribution F; of X; with covariate Z;
is given by

1 - F(f) = (1= F(£)*®),
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where 3 € RP is the unknown regression coeflicient and F is the baseline distri-
bution. The cumulative hazard function (CHF) A of the distribution F is defined
as dA(t) = dF(t)/(1 — F(t—)). The CHF of X;, A;, is defined similarly,

dA;(t) = 1 — (1 — dA(t))=PBTZ:), (2.1)

If A is absolutely continuous with respect to the Lebesgue measure, there exists
a hazard function a such that A(t) = f(f a(s)ds and the hazard function of F; is
given by a;(t) = a(t)eﬁTZi.

The main feature of the survival data is that the survival times are subject

to right censoring, and only (T1,61,21), ..., (Tn,0n,Z,) are observed, where
T; = min(C;, X;),6; = I(X; < C;) and Cy,...,C, are independent censoring
variables. Based on the data, (T1,61,21), ..., (Tn,6n,Zn), we wish to make
inference on 3 and F.

For the following sections, we introduce some notation. For ¢ = 1,2,--- | n,

define counting processes N;(t) = I(T; < t,6; = 1) and Y;(t) = I(T; > t). Let
N(t) = S0y Nilt), AN(f) = N(t) = N(t=), and Y(8) = X0, Yi(®). Let g
be the number of distinct uncensored observations and ¢ < t; < --- < t4, the
distinct ordered uncensored observations. Define

D,t)={i:T;=t,6=1, i=1,...,n},

R,(t)={i:t<T; i=1,...,n},
and R} (t) = Ru(t) — Da(t).

2.2. Prior and Posterior

In the proportional hazard model, we have two parameters, the CHF A and
regression coefficient 3. For the simulation study, we use the beta process with
parameter Ag(t) and c(t), BP(Ay,c), as the prior for A and N(0,021) for 8.

The beta process BP(Ay, ¢) is a nondecreasing independent increment (NII)
process with Lévy measure

v(dz,dt) = —C—EEE)-(l — )= dzd Ay (¢).

See Hjort (1990)for the original definition of the beta process and Kim and Lee
(2001, 2003)for the detailed discussion of the NII process and its Lévy measure.
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FIGURE 2.1 The scatter plot of the MLE (z-azis) and the posterior mean (y-axis) with sample
size 30 and (a) c=0.1,a =0.1, (b)) c=0.1,a =10 c=0.1,a =10.0 c=10.0,a = 0.1
c=10.0,a =10 c=10.0,a = 10.0.

If A ~ BP(Ay,c), the expectation and variance of A are given as follows:

EA(t) = Ao(t)

VarA(t) =/0 %)—0—(%.

Thus, Ap is the center of the prior and c¢ governs the variance of the the prior,
i.e., smaller the value of c larger the variance of A. In the simulation experiment,
we will study the behavior of the posterior with different values of Ay and c.

For the statistical analysis, we need to extract information from the posterior.
Since the posterior of A and ( is not of a simple form, to extract information
from the posterior we need to sample from the posterior using Markov chain
Monte Carlo (MCMC). An MCMC scheme for the proportional hazard model
with beta process is described in Lee and Kim (2004).For the completeness of the
paper, we describe the algorithm here. Note A = Ag + A, where A; and A, are
stochastically discrete and continuous part of A, respectively and in the sampling
scheme Ay and A, are sampled separately.

° Sampling A. given § and data:
a. M ~ Poisson()) with A = 1 [7 c(s)dAo(s)-
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b. Fori=1,---, M, r; & ¢(r)dAo(r)I(0 < r < 7) and let s; = r(;).
c. Fori=1,--- ,M, z; ~ Beta(e, Ry(ss, ) + ¢(s1))-
e Sampling A4 given 3 and data: For i = 1,--- ,qn, let v; = —log(l —

u;). Two auxiliary random variables, y; and w; = (w1, - s Wi(k;)) are
introduced.

a. y; ~ Geometric(l — e™%).

b. For j =1, -+, ki, w x exp(— exp(ﬁTzi(j))viwij)I(O < wiy < 1).
c. v; ~ Gamma(k; + 1,c(t;) + R} (¢,8) + yi + Z?;l wi]-eﬂTzi(j)).
d. Set u; =1—e™".

e Sampling 3 given A and data: We use the random-walk Metropolis-
Hastings algorithm. Let 3* be a candidate value generated from random-
walk kernel ¢(3, 3*). Then, the acceptance ratio is

: /"*T:,'j L (s5,8*
(g% 3% (H?él(l —(-w)t ) - w i )) Ly = )"t o o

{(B) qn (H;c_'__l(l —a- ui)eﬁT:i(j) )1 - m)Ri(tnﬁ)) X jlvil(l - mj)Rn(sj & (8,8

Jj=1

3. A SIMULATION STUDY

For the simulation experiment, we generated the sample from two baseline
distributions: F; = Ezxponential(l) and a discrete distribution Fy which has
support {0.3,0.5,1} with probability 1/3 each. We consider only the one dimen-
sional regression coefficient and its true value is fixed at 1. The covariate z is
generated from Bernoulli(0.5). The right censoring variable is generated from
Exponential(0.5). We generated 1000 set of samples with size n = 10 and 30.
Because the sample sizes are small, there were non-negligible portion of samples
that do not have unique MLE. We discarded these samples. This is usually due
to constancy of the likelihood in some direction. For a set of sufficient conditions
for the existence of the MLE, see Andersen et. al (1993).

We took N(0,1002) for the prior for 3. We chose sufficiently large variance
for the prior of 3 so that in the simulation the effect of the prior of 3 is negligible.

For the prior for A, we put two different types of beta processes:

e BP1: BP(Ap(dt) = adt,c(t) = c)

e BP2: BP(Ay(dt) = adt, c(t) = cexp(—at).
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TABLE 3.1 Frequentist Performance with sample size 10 and Fy = Exponential(l).

n =10 Posterior Mean Posterior Median Mean Length Coverage

Prior c a bias RMSE bias RMSE of CI Rate
BP1 1 0.1 .07020 1.2505 .007372 1.1881 3.642 .856
1.0 .0008926 1.2284 -.06191 1.1735 3.589 .860

10.0 -.4500 1.2884  -.4777  1.2692 3.153 .804

10.0 0.1 1.3807 1.5981 1.3511 1.5473 3.168 541

1.0 -.06002 5940  -.03156 5722 2.283 957

10.0  -2.2104 22814 -2.1609 2.2304 1.910 .018

BP2 1 0.1 .04568 1.2480 -.01219 1.1922 3.630 .860
1.0 -.09261 1.2787 -.1385  1.2441 3.466 .828

10.0 -.7164 1.2094 -.7400 1.1883 1.208 .293

10.0 0.1 1.3800 1.6006  1.3477 1.1922 3.183 .540

1.0 -.05414 .6039  -.03067  .5798 2.353 961

10.0 -1.3942  1.5135 -1.3796 1.4982 1.006 .061

MLE -.1349 0.8195 3.104 .935

BP1 is used in Lee and Kim (2004) as an example and BP2 is used in Laud,
Damien and Smith (1998).In fact, BP2 is the Dirichlet process at the parametric
center Exponential(a). We considered prior combinations of ¢ = 0.1,10 and
a = 0.1,1.0,10.0. Here ¢ = 0.1 represents small prior variance or weak prior
knowledge and ¢ = 10 represents strong prior belief. The value a represents
that the center of the prior processs is at Ezponential(a). Thus, when the true
baseline is Fi, a = 1 represents that the prior is centered at the truth. Even
when the true baseline is Fy, the center of the prior is closest to the truth when
a=1.

The MCMC for the Bayesian analysis was run for 2200 iterations with thin-
ning number 2 with the first 200 iterations were discarded as burnin. We wish
we could have run for longer chain, but the simulation time is prohibitively long
as one can imagine. In some cases we ran much longer chains, but the simulation
results were similar to what we have here.

Tables 3.1 and 3.2 are the simulation results for the true baseline F; with
sample sizes 10 and 30, respectively; Tables 3.3 and 3.4 are for the true baseline
F2.

In each simulation iteration, we computed two Bayes estimators: the posterior
mean and median, and the MLEs. There are three different ways to deal with
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TABLE 3.2 Frequentist Performance with sample size 30 and Fo = Ezponential(1).

n =30 Posterior. Mean  Posterior Median Mean Length  Coverage
c a bias RMSE bias RMSE of CI Rate
BP1 1 0.1 .1083 .5851 ~09506 5734 1.706 .870
1.0 .09196  .5778 .07934 .5681 1.687 .864
10.0 -.04145 5712 -0.05090 .5620 1.620 852
100 0.1 .8141 4701 .8053 .4609 1.647 .515
1.0 .05104  .3805 05377 3773 1.341 923
10.0 -1.7453 .3628  -1.7336 .3617 1.039 .004
BP2 1 0.1 1137 .6287 .1000 .6137 1.705 .854
1.0 .06120  .6255 .05336 6230 1.623 .829
10.0 -.5840 .8920 -.5884 .8886 .5586 291
100 041 .8023 9411 7923 9271 1.655 .543
1.0 .05624  .4075 .05680 .4043 1.387 .926
100 -9700 1.0334  -.9687  1.0330 4287 JA11

MLE 05736  0.5053 1.632 911

ties in the data, Efron, Breslow and exact. For a detailed explanation of these
estimator, see Klein and Moeschberger (2003).When there are no ties, these three
estimators are exactly the same; thus we report only one as in Tables 3.1 and
3.2. For each estimator, we compute the bias and the root mean square error
(RMSE). Also we computed 90% Bayesian credible set and frequentist confidence
interval and compare their empirical coverage rate and the mean length of the
interval estimates.
Our observations from the simulation study are in order.

e First of all, in most cases except that the prior is centered near the truth,
the RMSE of the Bayes estimators are larger than that of the frequentist
estimators whether the baseline distributions are continuous or discrete.
Similar phenomenon appears for the Bayesian interval estimators. The
empirical coverage rate is smaller than the nominal coverage rate and the
mean length is usually larger than that of the frequentist counter part. As
is expected, when the prior is centered near the truth however, the Bayesian
estimators and interval estimator performs superior.

¢ In all simulation experiments; these two Bayes estimators do not show much
difference in the sense of RMSE, but the RMSE of the posterior median is



242 J. LEE

TABLE 3.3 Frequentist Performance with sample size 10 and Fy discrete.

n=10 . Posterior Mean  Posterior Median Mean Length  Coverage
c a bias RMSE  bias RMSE of CI Rate
BP1 1 0.1 2.500 5.588 2.352 5.518 7.455 .680
1.0 2.056 4.694 1.901 4.592 6.933 675
10.0 .2821 1.961 1175 1.740 4.692 794
10.0 0.1 2.197 2.697  2.0268 2.429 4.686 416
1.0 .04656  .4802  .06856 4583 2.428 .992
10.0r -2.287 2312 -2.238 2.261 1.947 .000
BP2 1 0.1 2.518 5.766 2.321 5.619 7.587 674
1.0 1.834 4478 1.661 4.336 6.553 672
10.0 -.7255  1.568  -.7536 1.498 .6368 -.065
10.0 0.1 2.1688 2.671 1.9994 2.402 4.688 .425
1.0 .01674 5033  .03284 4781 2.515 .987
10.0 -1.511 1.642 -1.499 1.628 7625 .006
efron -.2283  .7984 2.936 .926
MLE  breslow -.4085 - .7136 2.919 .954
exact  4.855 11.935 3.0x 10° 985

consistently smaller than that of the posterior mean except a few cases.

e When cis small (¢ = 0.1), the MLE and Bayes estimator match closely, but
for a larger ¢ value they do not match. See Figure 2.1.

o When the baseline distribution is discrete, the performance of exact is ex-
tremely poor. We don’t know yet why this occur. But it seems that when
there are many ties, the exact method should not be used.

In most small sample cases, since the normal approximation to the likelihood
is usually poor, the Bayes estimator performs better than the MLE even in the
frequentist sense. Accordingly, when we began the simulation experiments, we
expected in these small sample experiments the Bayes estimator would perform
superior to the MLE. Thus, the less than expected performance of the Bayes
estimator came to us as a surprise. We don’t understand yet why this behavior
occurs. A partial explanation of this is that the partial likelihood is very well
approximated by the normal distribution even with a small sample size. But, this
does not explain why the performance is the Bayes estimator is so poor. Another



SIMULATION STUDY OF PROPORTIONAL HAZARD MODEL 243

TABLE 3.4 Frequentist Performance with sample size 30 and Fy discrete.

n = 30 Posterior Mean  Posterior Median Mean Length  Coverage
c a bias RMSE  bias RMSE of CI Rate
BP1 1 0.1 3505 1.765  .3221 1.804 2.214 .849
1.0 .2951 1.426 .2692 1.431 2.128 .839
10.0 .08613  .8256  .05795  .7644 1.912 .840
10.0 0.1 9695  1.207 9397 1.141 1.904 470
1.0 .1643 .3995 1635 3941 1.442 .942
100 -1.749 1764  -1.738 1.753 1.077 .000
BP2 1 0.1 3814 1912 3573 1.946 2.215 844
1.0 1922 1.230 1742 1.215 1.734 728
10.0 -.4888  .7T760  -.4894 7747 04321 014
10.0 0.1 .9524 1.207 .9232 1.139 1.911 .491
1.0 1112 .4099 1077 .4022 1.491 941
10.0 -1.032 1.109 -1.031 1.109 .04460 .003
efron -.1262 4834 1.531 .888
MLE breslow -.3835  .5096 1.520 845
exact 9349  3.179 1.027x 10° 892

possible explanation for this is that the frequentist model for the derivation of
the partial likelihood is basically continuous hazard model while the Bayesian
model is the discrete model to accommodate the discreteness of the beta process
prior. But, still this does not fully explain the poor performance of the Bayes
estimator even in the discrete model. We believe much of theoretical study should
be done in small sample case. But the theoretical study of small sample behavior
is inherently difficult, because the first order asymptotics do not make difference
between the posterior and sampling distribution of the MLE. Thus, to study
this behavior we need to study the second order asymptotics of the posterior
distribution, which is more technical than the first order asymptotics.
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