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ABSTRACT

A set of conditions ensuring local asymptotic normality for independent but not necessarily
identically distributed observations in semiparametric models is presented here. The conditions
are turned out to be more direct and easier to verify than those of Qosterhoff and van Zwet
(1979) in semiparametric models. Examples considered include the simple linear regression
model and Cox’ s proportional hazards model without censoring where the covariates are not
random.

1. Introduction

In the theory of asymptotic estimation and testing hypotheses, local asymptotic normality(LAN
for short) of a family of distributions has had an important role since its importance was introduced
by Le Cam(1960). In particular, Hajek-Le Cam’s convolution theorem(see Hajek(1970) and
Le Cam(1972)) and asymptotic minimax theorem(see Hajek(1972) and Le Cam(1972), (1979))
was derived from LAN property of a family of distributions although Le Cam’s results covered
families which may not be locally asymptotically normal. Another but recent results of this sort
were established by Begun et al. (1983) in semiparametric models.

In view of this importance of the notion of LAN, many authors presented sets of conditions
for LAN. Very broad conditions ensuring LAN for independent identically distributed observations
in parametric models were given in Hajek(1972). Begun et al. (1983) gave a set of conditions
for LAN of independent identically distributed observations in semiparametric models and using
LAN they established the representation theorem and the asymptotic minimax lower bounds
for regular estimates.
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However, in many statistical models, the observations are not homogenous even though they
are independent. Examples include various regression models where the covariates are constant.
In this paper we present a set of conditions ensuring LAN for independent but not necessarily
identically distributed observations in semiparametric models. As Begun et al. (1983) did it,
we will be able to use LAN for establishing the appropriate representation theorem and the
asymptotic minimax theorem in this inhomogenous semiparametric situation. We shall return
to this point in a subsequent paper.

For independent but non—identically distributed observations in parametric models, conditions
ensuring LAN were given by Kushnir(1968), Phillipou and Roussas(1973) and Ibragimov and
Khas’ minskii(1975). Le Cam(1960), Oosterhoff and van Zwet(1979) also considered the indepe-
ndent not identically distributed case in general situations but their conditions are not so transpa-
rent to verify in semiparametric models.

Section 2 of the paper is devoted to recall the necessary definitions and notations. The main
results including some examples will be provided in section 3 and the proof of Theorem 3.1
in section 3 will be given in section 4.

2. Definitions, Notation and Assumptions

For notational ease, first we will deal with the simplest but most important type of semiparamet-
ric model with a parametric component 8 ®, where ® is an open set in R', and a single
nonparametric component ge & where & is a specified set of density functions. Our conditions
and results for this one — dimensional parametric component can be extended for a multi—dimen-
sional parameteric component in the obvious manner, which will be sketched in the remarks
at the end of section 3.

Let @ be an open subset of R' and & be a specified set of density functions with respect
to a o—finite measure v on some measurable space(s, D), let Piog j=1,-,n(n=1,2,")
be a probability measures on the mesuarable space (X, B;). We assume that there is a c—finite
measure y; on B, such that y dominates Pyoy 6€E®, geg, j>1, and let £( +,0,2) =d Pio../ dy
for a specified version of the Randon-Nikodym derivative involved. Define (%, o) =II": (X,
B and let P,, be the product measure of Pjo.j>1, induced on 4. Let Xi, Xo '+, XX
be independent observations, the j—th of which has density £( -, 0, g) with respect to y on
Bi. Po.s™ is the projection of Ps., onto IT%=: (X, B;) and Eos™ is the corresponding expectation.
The norm | - ;= lill,denote the usual L*(y) —norm. In the sequel, for brevity of notation, we
set £(8, g) for the random variable f(X;, 6, g).

For 0, 0"€® and g, g’ G, let

5(6,0" 5 gg")= r(6,0*; gg': X) 2.1
4o, g*)

= o[ B ]

£%(8, g

These 1;’ s are by definition functions from &; to [—2, o ]. The value o is taken on the singular
part of Pje+..»with respect to Pieg Obviously, r;(0,8* 5 g,g*) L*(Pioo). These terms r;’s will
be useful in proving the main theorem in section 4. Now define

d Po*.g*(") fj(e*y g*)
— = log I~y ———=—
d Pp £ %0, @

In section 3 we will establish the asymptotic normality for A.(6,6.: g.g.) (so LAN) for the

A.(8,08%5 g,g")=log 2.2
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sequence (6,, g.) such that
| n**(6,—0)—h|—>0 and In**(g."*—~g") —BI—> 0 as n >
for some h€R' and BE€L*(v) respectively. Let B be the collection of all such € L*(v) i.e.

B={peLl*(v) | In¥*(g,"*~g") —Bll,— 0 as n—> © (2.3)
for some sequence g, with all g.eg}.

throughout the paper we will rely on the following Assumption about B as it appears in Begun
et al. (1983).

Assumption S The set B defined in (2.3) is a subspace of L*(v).

In addition to the comments on this Assumption in Begun et al. (1983) we can say that this
is equivalent to the condition that the tangent space is equal to the tangent set in Theorem
1, section 4, Chapter 3 of Bickel et al. (1986) (see Pfanzagl(1982) or Bickel et al. for the definition
of tangent space and tangent set). Assumption S ensures that we can approach to g along two
opposite directions and this fact will be used in the proof of Lemma 3.1 which concerns about
the rate of convergence for the singular parts of f(6., g.) with respect to £(8, g).

We conclude this section with the following definition of the uniform Hellinger differentiability
of {£+%(8, g}.

Definition 2.1. (Uniform Hellinger differentiability of {£**(@, g)i). The sequence of the root
densities {£%(8, g} is said to be uniformly Hellinger-differentiable at (8, g) ®XG if there
exist random functions p,s€L*(y) and bounded linear operators B;; L*(v) — L*(p) such
that

sup 11f*(0., g — 170, @ —1{p.(6.—8) +Bi(g.*— gD},

| 6.—0 1 + g ~g"%I, > 0asn—eo (24)

for all sequences (6., g.) such that 6,—> 8 and g."*— g in L*(v) where g.€4 for all n>1.
Note that when fi=f, (2.4) reduces to Hellinger differentiability of f"* defined in Begun et
al. (1983).

3. Main Results

Let (8., g.) be any sequence such that
[ n¥%(0,—6)—h | =0 and n**(g."*—g")—BiIl,—>0as n—>w (3.1)

for some heR' and B L*(v) respectively. Then the following proposition is an immediate conse-
quence of uniform Hellinger differentiability of {£*(8, g)}.

Proposition 3.1. Suppose {f/%(8, g)} is uniformly Hellinger — differentiable at (0, g) e ®X 4.
Then

2l 20 g — £ (8,g) —n"oiil’ >0 as n—> (3.2)
where o;€L*(y) is given by :
o=h po+B; B (3.3)

Note that if f=f, then this proposition is reduced to Proposition 2.1 in Begun et al. (1983).
In addition to (3.2) we have also
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{aj £ =0 for any j>1 (3.4)

with £?=£"2%(0, g) under the uniform Hellinger differentiability condition. Our conditions for
LAN will be based on (3.2) and (3.4) because those are weaker than the uniform Hellinger

differentiability condition. Here are our conditions ensuring LAN for the family Po,.

(CD (3.2) and (3.4) hold with a; given by (3.3).
(C2) The random functions af ™%, where q; is given by (3.3), satisfy Lindeberg’s condi-
tions

1
lim 'H Enj=1 Eo.g(ns{ajzfj—l I( I (I.jfj_l/2 I >n1/28)} =0 (3. 5)

n—ra«

for any ¢>0. And

.1 o
hmFansl Noyll’ = o°. (3.6)

n—o

Remark 3.1. For independent and identically distributed case (C2) is automatically satisfied.

Remark 3.2. The condition (C2) is closely related to the condition (3.7) in Qosterhoff and
van Zwet(1979) which amounts to the Lindeberg’s conditions applied to r;(8,6.; g,g.) defined
by (2.1). However (C2) is easier and more direct to verify than (3.7) in their conditions when
we know our derivatives o;’s. In fact, po is typically just the usual parametric score function

1.0
for 0, i.e. ‘é[(‘ag) log £(0, g ] £7%(6," g) and AB can be found heuristically by calculating

1/2

the first derviative of log[£,(8, g,)] with respect to n at n=0 times £*'%(0, g) where g,=g+npg"%

Remark 3.3. (A3) and (A4) in Phillipour and Roussas (1973), even though their results
are for parametric models, are much stronger than (C2).

Lemma 3.1. Under Assumption S and (C1), we have

hm Enj=1 j(xl fj(x.O.g)=Ol fj(x’ ens gn) “}(dX) = 0- (3- 7)

n=>x

Proof. From Assumptions S there exist g,'e g for all n<1 such that
In**(g.***—g“*) +cpil, —> 0 for some c>0.

Also since ® is an open subset of RY, 6,"*=0+c(0—0,) €E® for sufficiently large n. Hence
we can find 6,"€® for all n>1 such that | n*(8,*—86)+ch| — 0. Hence from (C1) we
get

Tl 48,7, ) — 670, @ +n " ¢ gl >0 as n—> . (3.8)
This together with (3.2) implies

1
Zealf (0 g0) — 6770, @+ {6726, &) —£%6, Pl 0as n—>w

Now in view of Lemma 5 in Chapter 17, section 2 of Le Cam(1986), (3.7) follows immediately
from (3.8). W

In the proof of Lemma 3.1 we can notice that Assumption S amounts to the richness of the
contingent at g in the spirit of Theorem 3.1 in Le Cam(1986). Also note that (3.7) in Qosterhoff
and van Zwet(1979) implies (3.7) in the present paper. Now we state our main theorem as
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follows.
Theorem 3.1. Under Assumption S and conditions (C1), (C2), we have, for any £>0.
Po..”{ | Au—2n"? b5 (X)X, 0,8 +26% | >e} >0 as n—>
=1

Thus, under P,
An—¢ N(—2¢% 46®) as n—> ©

and the sequences {II%-: fi(x;,0., g} and {II"-: £i(x,0,g)} are contiguous.

Thus Theorem 3.1 asserts that the condition (C1) and (C2) are sufficient for the LAN of
the family Po..” at (8, g)€ @ X G under Assumption S. The proof will be given in section 4
and is mostly benefited by Ibragimov and Khas’ minskii(1975).

Remark 3.4. When we have a triangular array of independent observations Xa, . Xm, ",
Theorem 3.1 remains valid under the corresponding conditions on this triangular array. We
formulate this as follows .| Suppose X has a density f,;( - ,0,g) with respect to p; We define
all the terms necessary using f, instead of f; as we did it in section 2. Then we have the following
theorem without any difficulty.

Theorem 3.2. Under Assumption S and the corresponding conditions with f;, we have, for
any £>0,

Po.g("){ ‘ An_2n_l/2 é anj(an)fnj~1/2(ans ey g)+262 | >8} - 0 as n_) (e8] (3. 10)
=1

Thus, under Po..™,
A~ ¢ N(—26% 46%) as n—>
and the sequences {IT%- f;(x4 6. gJ} and {II%-: f;(xy 6, g} are contiguous.

Remark 3.5. When we have a parametric component 6 ®, where @ is an open set in R",
Definition 2.1, Proposition 3.1, Lemma 3.1 and Thoerem 3.1 must be altered as follows :
with 16,—0| =0, 1g."*~g"?Il,—~ 0asn— o where | * | denotes the usual Euclidean norm,
instead of (2.4) we require that

op,  1IE72(8, g) — 728, @) — { p.0(8,— ) +By(g. 2~ gD} 1,
| .~ 8 | +ug2—g",

~> 0asn—>w®
for some k-vector p;e of function in L2(y;) and B; a bounded linear operator as in Definition
2.1. The required change in Proposition 3.1 is that (3.3) must be replaced by

o=h - piet+Bf (3.3

where | n%(8,—0)—h! — 0 and n**(g*—g“* — Bl —> 0 as n—> . Lemma 3.1 and Theo-
rem 3.1 also must be understood with these changed 6., 6 and o

Example 3.1. In this example we consider the simplest regression model as follows -
Yj:6 X+ g

where g s are i.i.d. and have an unknown common density g with respect to lebesgue measure
v on R! and O€R! and x’s are not random. Then Y; has a density £( - ,0,g)=g(- —0x).
If the Fisher information L is finite, sup I %1 <C for some C>0 and 1./ n X% x> —> a>0,
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then (C1) and (C2) are satisfied with p,-.o(\' )==1/2 % gg (- —06x), (BB(-)=8(-
—0x) and B={peL*(v) : <B, g“*>=0}. Hence Assumption S also holds and A, is asymptotica-
lly normal with mean —12 al, and variance al,.

Example 3.2. In this example we consider Cox’s regression model with constant covariates.
For the purpose of simplicity, we treat the case without censoring. We observe T; having hazard
function given by

M) =M1 exp(6Z) 6€R

where A( ) =g G'(-), G(-)=1-G(- ):ﬁ g dv, v is Lebesgue measure on R*, Z’s€R
are covariates and constant in constrast to that they were treated as iid random variables with
known density in Efron(1977), Tsiatis(1981), Begun et al. (1983), Bickel et al. (1986) and else-
where. Let

g=/{all densities with respect to Lebesgue measure v on R'}.
Then
PLT>t]1=G ()

where r;/=exp[6 Z]
Hence the density of T; with respect to v is

£(t.0.9) =1 g®G (.
Now natural candidates for B; and p;o are as follows -

—_— - 2 —_— jm'B gl/de /2
Bg={B g+ (5—1) —G-(f}fj

1 -
po=3 Z(1+log GHf*?

As Bgun et al. (1983) pointed it out for random Z, (8.2) fails with B; and p;e defined by (3.11)
if we approach g having bounded support along with g.”s which have support outside that of
g. To see this, let

1 1 2 2
g, = [(l—ﬁ’)g‘/zﬂ-ﬁ g"%] /¢, where cn=1—'\/‘; o,

and g”, g have supports S and $° respectively.
Then for certain fixed 6

%0, g)—£7%0, g —B BI2

=1

> 2 [ £(t,0,g)dt>1
=1

if <1 for all j. This happening can be avoided if we restrict ourselves to 3={peL*(v) | <8,
g2 =0, support (B)Csupport (g)} as in Begun et al. (1983). Now it is not so hard to see
that (C1) and (C2) hold with p., and B; given by (3.11) if sup | Z | <C and 1/ n %-. Z2
e — a for some C and a>0. '
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4. Proof of Theorem 3.1

By expanding A. by Taylor’s formula for max | ry] <e¢ with ry=1,(0,8.5 g, 8., we
1<i<n
obtain

1 1
An=2“,-=1 Iy "21." 2= rnj2+ § ZN=1 Wi l I'n l 3
where | win | <1. By the fact that <o, £“»=0 for any j>1, 2n™"? T, o;(x)f*(x) has
the asymptotic normal distribution with parameter (0, 46?) under (C2). From this fact it suffices
to show the equalities

lim Po,” {max |r;|>e}=0 4.1
n-w 1<i<n

m Po® {|E ri—40®| >e}=0 (4.2)
n—cw© j=1

im P {|E ry—202 % o 246 | >e} =0 (4.3)
1w j=1 =1

im P {|Z |1yl >e}=0 (4.4)

1

n—w i

Note that (4.4) is a direct consequence of (4.1) and (4.2) so that we need to prove only
(4.1), (4.2) and (4.3).

Proof of (4.1). The following inequalities are obvious.
Po..® {max |ry| >¢}
1<i<n
< Z Po®{ | 1y | >e}
=1

2
€
}.

nv
4

< ji:l Po®{ | jz:;l r—2n"V? g £V | >;.} + él Po.®{ | o 772>
By Chebyshev’s inequality, we see that the first sum on the right tends to zero by Proposition
3.1 and the second one does so by (C2).
Proof of (4.2). Using the useful inequality

| ab | <o &2/ 2+b% 20 a0, 4.5)

we obtain

o 4
Po {12 (r'—g o £ 1 e}

1. o) 2 4,
S—" > EO,g I Ty '—H Qay f, I
g =t

(0] n . _
——Zg 21 Eo,g(n) I rnj_zn /2 o f, 1/2 l 2
j=

+.1_ I:i i 2 4 > 2 ]
ae tn = NGl El I1Te5ll7o5.0.
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for any a>0. By Proposition 3.1 and the condition that n”’ Enl lloyll,” —> o?,  the right hand
side of the last inequality can be made arbitrarily small if we let n— oo first and then let a —> .

The relative stability of 1./ n ﬁlla,-z £, which is guaranteed by (C2) (cf. Gnedenko and Kolmo-
=

gorov(1968), Corollary 2 on p.141), ensures

af 71— o® in Pe,, ™~ probability
1

R
5 Ms

since by Lemma 3.1 we have

1.
lim —X | o? dy=0. (4.6)

n—w n =1 {f;=o}
Proof of (4.3). From Proposition 3.1

4 =

n n
3, =g = lo £, +2 X <m—207% o £
j= =1 =1

8.
1 jobeg

207" o5 £ >, ,+0(D)

where € * Dpog is the usual inner product in L*(Pie).
Using (4.5) again we can see

I i <ry—2n7V? o £V 2nV? g f,-_’/2>Pj.o.g| 4.7
a n 1 4
y e _— =

SZ El |rn_| 2[1 aj fj 2”1’;9‘g 20, n El ”ajnﬂ)

Letting n — o and then a —> 0 ensures that both of two terms on the right hand side of (4.7)
tend to zero, which entails

lim X ltalls,, =40° 4.8

n—~wo j=1

because of (4.6). Now Lemma 3.1 together with (4.8) implies that
lim E%, (2 ) =—0o (4.9)

after going over to expectations in the identity

£,(x, 005 g2
|:f(x,,e, —1]—4 2 Lo

)=l
Hence, for sufficiently large n, we get

Py | Z fy— 20"V 2 o 7 +o? | >}

n 3 £
é 0, (n){ l E (rn) E()gn) rnj)—zn_l/z E 0.,' fj_]/l l >§}
=1

n
—<“§ Ee.g(n)l:zl (rn,-—Ee_gm) rnj)_zn—l/z Zl o ffV2:|2
i= &
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El

4
oy

—€ : j6 g

I}

-1/2 -1/2, 2
Ity—207"% o 7%
1

Therefore (4.3) follows from Proposition 3.1. W
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