• Title/Summary/Keyword: properties of zero

Search Result 801, Processing Time 0.028 seconds

The transmuted GEV distribution: properties and application

  • Otiniano, Cira E.G.;de Paiva, Bianca S.;Neto, Daniele S.B. Martins
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.239-259
    • /
    • 2019
  • The transmuted generalized extreme value (TGEV) distribution was first introduced by Aryal and Tsokos (Nonlinear Analysis: Theory, Methods & Applications, 71, 401-407, 2009) and applied by Nascimento et al. (Hacettepe Journal of Mathematics and Statistics, 45, 1847-1864, 2016). However, they did not give explicit expressions for all the moments, tail behaviour, quantiles, survival and risk functions and order statistics. The TGEV distribution is a more flexible model than the simple GEV distribution to model extreme or rare events because the right tail of the TGEV is heavier than the GEV. In addition the TGEV distribution can adjusted various forms of asymmetry. In this article, explicit expressions for these measures of the TGEV are obtained. The tail behavior and the survival and risk functions were determined for positive gamma, the moments for nonzero gamma and the moment generating function for zero gamma. The performance of the maximum likelihood estimators (MLEs) of the TGEV parameters were tested through a series of Monte Carlo simulation experiments. In addition, the model was used to fit three real data sets related to financial returns.

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

ANNIHILATING PROPERTY OF ZERO-DIVISORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Nam, Sang Bok;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.27-39
    • /
    • 2021
  • We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called right AP. We prove that a ring R is right AP if and only if Dn(R) is right AP for every n ≥ 2, where Dn(R) is the ring of n by n upper triangular matrices over R whose diagonals are equal. Properties of right AP rings are investigated in relation to nilradicals, prime factor rings and minimal order.

Electrical transport characteristics of deoxyribonucleic acid conjugated graphene field-effect transistors

  • Hwang, J.S.;Kim, H.T.;Lee, J.H.;Whang, D.;Hwang, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.482-483
    • /
    • 2011
  • Graphene is a good candidate for the future nano-electronic materials because it has excellent conductivity, mobility, transparency, flexibility and others. Until now, most graphene researches are focused on the nano electronic device applications, however, biological application of graphene has been relatively less reported. We have fabricated a deoxyribonucleic acid (DNA) conjugated graphene field-effect transistor (FET) and measured the electrical transport characteristics. We have used graphene sheets grown on Ni substrates by chemical vapour deposition. The Raman spectra of graphene sheets indicate high quality and only a few number of layers. The synthesized graphene is transferred on top of the substrate with pre-patterned electrodes by the floating-and-scooping method [1]. Then we applied adhesive tapes on the surface of the graphene to define graphene flakes of a few micron sizes near the electrodes. The current-voltage characteristic of the graphene layer before stripping shows linear zero gate bias conductance and no gate operation. After stripping, the zero gate bias conductance of the device is reduced and clear gate operation is observed. The change of FET characteristics before and after stripping is due to the formation of a micron size graphene flake. After combined with 30 base pairs single-stranded poly(dT) DNA molecules, the conductance and gate operation of the graphene flake FETs become slightly smaller than that of the pristine ones. It is considered that DNA is to be stably binding to the graphene layer due to the ${\pi}-{\pi}$ stacking interaction between nucleic bases and the surface of graphene. And this binding can modulate the electrical transport properties of graphene FETs. We also calculate the field-effect mobility of pristine and DNA conjugated graphene FET devices.

  • PDF

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Spectroscopic effects of negative and positive stresses on the transition metal-ion activated sapphire fibers

  • Lim, Ki-Soo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.115-120
    • /
    • 1990
  • The spectroscopic properties of Cr3+-doped sapphire and Ti3+-doped sapphire fibers are reported. Tensile stress produces blue shifts of the R lines and changes in their radiative lifetimes and integrated intensities which can be correlated to stress-induced changes of the crystal-field parameters in a Cr3+-doped sapphire fiber. A net red shift of the zero phonon fluorescence line of 2Eg state and a decrease of the splittings of 2T2g state with uniaxial stress are observed in a Ti3+-doped sapphire. In excitation spectra the two peaks from the 2Eg state are shifted to the blue with different rates. The changes are attributed to the stress-induced changes of crystal field and Jahn-Teller effect.

  • PDF

Development of Shape Optimization Scheme Using Selective Element Method (Application to 2-D Problems) (선택적 요소방법을 이용한 형상 최적 설계 기법 개발)

  • Shim, J.W.;Shin, J.K.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.531-536
    • /
    • 2001
  • The structural shape optimization is a useful tool for engineers to determine the shape of a structure. During the optimization process, relocations of nodes happen successively. However, excessive movement of nodes often results in the mesh distortion and eventually deteriorates the accuracy of the optimum solution. To overcome this problem, an efficient method for the shape optimization has been developed. The method starts from the design domain which is large enough to hold the possible shape of the structure. The design domain has pre-defined uniform fine meshes. At every cycle, the method judges whether all the elements are inside of the structure or not. Elements inside of the structure are assigned with real material properties, however elements outside of the structure are assigned with nearly zero values. The performance of the method is evaluated through various examples.

  • PDF

DYNAMICS OF OPEN II-RAYS (META PHYSICS) AND CLOSED II-RAYS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • The imploded open $\pi$-rays comprise of the space and their diameters are distributed from nearly zero to infinite. The change of the potential energy in the open $\pi$-ray produces an attraction force between them and it is sensible to the geometric shape factor and its frequency. The equivalent principle of general relativity means that in the wave equation its velocity of the force wave is infinite. The change of the state in a open $\pi$-ray(or any force wave) can be transferred to any sensible open $\pi$-ray via space at a finite velocity. Many properties of the light wave can be deduce from the motions of open $\pi$-rays.The nonsteady and steady Schr dinger equations include the dynamics of open $\pi$-rays and closed $\pi$-rays.$\prod$-ray is a tool of entity for constructing physics and metaphysics at the same time.

  • PDF

Engineering properties of mortar with the variation of blast furnace slag from different production areas (고로슬래그 미분말의 산지별 치환율 변화에 따른 모르타르의 공학적 특성)

  • Park, Jae-Yong;Zhao, Yang;Jung, Sang-Woon;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.206-207
    • /
    • 2014
  • Blast furnace slag is one kind of industrial by-product and was utilized with recycled fine aggregates for the manufacture of zero cement mortar. As the blast furnace slag was from different areas, the strength of the specimen using blast furnace slag showed different performances. In this study, blast furnace slag generated in different areas in Korea has been chosen, fundamental performances of the blast furnace slag blended mortar has been tested to evaluate the quality of the blast furnace slag. Results showed that difference for flowability is limited. As the alkali activation of the blast furnace slag, the compressive strength showed different results. The flexural strength showed little difference when the aggregates and types of blast furnace slag changed.

  • PDF

Póincare Sphere Analysis of the Pretilt Angle Effect on the Viewing Angle of a Single-Domain FFS Liquid-Crystal Mode

  • Lee, Dong-Jin;Oh, Seong-Woo;Shim, Gyu-Yeop;Choi, Jun-Chan;Lee, Joun-Ho;Kim, Byeong Koo;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.156-164
    • /
    • 2016
  • We demonstrated the pretilt angle effect on the viewing angle properties of a single-domain fringe-field switching (FFS) liquid crystal (LC) mode. By performing the Póincare sphere analysis, we investigated, in detail, the origin of the viewing angle asymmetry that exists in the single-domain FFS LC mode both in the field-on and field-off states. Using this analysis, we confirmed that the pretilt angle reduces the viewing angle symmetry in the single-domain FFS LC mode. Finally, we examined the effect of a zero pretilt angle on the viewing angle symmetry by evaluating real single-domain FFS LC cells.