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Abstract
The transmuted generalized extreme value (TGEV) distribution was first introduced by Aryal and Tsokos

(Nonlinear Analysis: Theory, Methods & Applications, 71, 401–407, 2009) and applied by Nascimento et al.
(Hacettepe Journal of Mathematics and Statistics, 45, 1847–1864, 2016). However, they did not give explicit
expressions for all the moments, tail behaviour, quantiles, survival and risk functions and order statistics. The
TGEV distribution is a more flexible model than the simple GEV distribution to model extreme or rare events
because the right tail of the TGEV is heavier than the GEV. In addition the TGEV distribution can adjusted various
forms of asymmetry. In this article, explicit expressions for these measures of the TGEV are obtained. The tail
behavior and the survival and risk functions were determined for positive gamma, the moments for nonzero
gamma and the moment generating function for zero gamma. The performance of the maximum likelihood
estimators (MLEs) of the TGEV parameters were tested through a series of Monte Carlo simulation experiments.
In addition, the model was used to fit three real data sets related to financial returns.
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1. Introduction

The generalized extreme value (GEV) distribution is widely used in several areas to model data from
extreme events that occur infrequently. For example, Lettenmainer et al. (1987), Hewa et al. (2007),
Morrison and Smith (2002) used it in hydrology to treat return periods of flood frequency or high
wind speeds. In finance, Embrechts et al. (1997), presents how to calculate the value at risk (VaR)
of maximum financial returns, and in actuarial science how to calculate the probability of ruin as
consequence of extreme events. Extreme events are more suitably modeled with heavy tails and the
GEV distribution has this characteristic. However, there are extreme event data that do not follow
GEV distribution, because they require a more asymmetric distribution or with a heavier tail than
GEV distribution. Thus, new classes of probability distributions have been developed that are more
general than the GEV distribution such as: dual gamma GEV distribution (GGEV), exponentiated
GEV distribution (EGEV) studied by Nascimento et al. (2016), transmuted GEV (TGEV) distribution
defined by Aryal and Tsokos (2009), and q-GEV given by Provost et al. (2018). The advantage
of TGEV distribution in relation to other generalized distributions is that it has a heavier tail than
GEV distribution as shown in Section 2. Moments, moment generating function, hazard rate function
and order statistics have a simple closed form. Therefore, TGEV distribution becomes flexible to
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model extreme events in several areas. According to Jenkinson (1955), the GEV distribution is the
limit distribution of properly normalized maximum (or minimum) of a sequence of independent and
identically distributed (iid) random variables. That is, if X1, X2, . . . , Xn are iid random variables with
cumulative distribution function (cdf) F(x) and if there are sequences of constants an > 0 and bn such
that

P
(

X(n) − bn

an
≤ x

)
→ G(x), as n→ ∞,

where X(1),X(2), . . . ,X(n) denote the order statistics and G(x) is a non-degenerate cdf, then G(x) be-
longs to one of the following three distribution families:

Gumbel: Λ(x) = exp
{
− exp

[
−

( x − µ
σ

)]}
, −∞ < x < ∞;

Fréchet: Φ(x) =

 0, x < µ,

exp
{
−

( x − µ
σ

)−α}
, x ≥ µ;

Weibull: Ψ(x) =

 exp
{
−

[
−

( x − µ
σ

)α]}
, x < µ,

1, x > µ,

where σ > 0, µ ∈ R, and α > 0. Jenkinson (1955) introduced the GEV distribution that contemplates
the three previous distributions. A random variable X follows the GEV distribution if its cdf is given
by

G(x) =


exp

{
−

[
1 + γ

( x − µ
σ

)]− 1
γ

}
, γ , 0,

exp
{
− exp

[
−

( x − µ
σ

)]}
, γ = 0,

(1.1)

where it is defined in the set {x : 1+γ((x − µ)/σ) > 0}, µ is a location parameter, σ is a scale parameter
and γ is a shape parameter. For γ = 0 the expression (1.1) is interpreted by taking the limit as γ > 0.
The γ parameter governs the tail behavior with an important impact on the shape of the distribution
that is called the tail index directly related to the shape parameter α. The Gumbel distribution is a
special case for γ = 0. Also note that the cases for γ = 1/α and γ = −1/α we have that the GEV
distribution is of the Fréchet type and the Weibull type respectively.

The transmutation map is a technique developed by Shaw and Buckley (2007) and consists of
introducing skewness or kurtosis in a symmetric or other (asymmetrical) distribution. It is a relatively
new technique; however, it has already been applied to several distribution functions. Some exam-
ples are the transmuted extreme value distribution introduced by Aryal and Tsokos (2009), Aryal
and Tsokos (2011), Aryal (2013) obtained the transmuted Weibull distribution and the transmuted
log-logistic distribution, and Merovci (2013) introduced the transmuted exponentiated exponential
distribution. With respect to the Weibull distribution and some extensions, Khan and King (2013a,
2016) developed its transmutation. Khan and King (2013b, 2014) and Mahmoud and Mandouh (2013)
developed the transmutation for the Weibull inverse distribution and some extensions. Khan and King
also obtained the transmutation of inverse Rayleigh distributions (2015), Khan et al. (2016a, 2016b,
2017) obtained the transmutation of Kumaraswamy distribution, new generalized Weibull distribution,
and new generalized inverse Weibull distribution. Elgarhy et al. (2017) introduced the transmuted
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generalized quasi Lindley distribution. Khan (2018) and Nassar et al. (2019) obtained the transmuted
generalized power Weibull distribution and transmuted Weibull Logistic Distribution, respectively.

Aryal and Tsokos (2009) defined TGEV distribution and discussed some properties about the
transmuted Gumbel distribution. Recently, Nascimento et al. (2016) applied the TGEV distribution
to environmental data with the parameter estimation of this distribution was done under the Bayesian
model. This work investigated the tail behavior and the main mathematical measures of the TGEV
distribution. The parameters are also estimated by maximum likelihood that included an application
to illustrate the model. This paper is organized as follows. Section 2 deals with some mathematical
properties of the TGEV distribution, such as the tail behavior, the moments, the hazard rate function,
and the order statistics. In Section 3, the inference procedure is performed by maximum likelihood
and some simulations are used to test the efficiency of the estimators. An application for extreme data
is presented in Section 4.

2. Tail behavior and properties of the TGEV

In this section we present the behavior of the right tail of the TGEV distribution. We show that the
right tail of the TGEV distribution is heavier than the right tail of the GEV distribution. Expressions
of moments, moments gerating function, hazard rate function, quantile function, and order statistics
were also obtained.

The transmutation map, proposed by Shaw and Buckley (2007), consists of a powerful technique
that considers some perturbations of the symmetry and manage kurtosis adjustments. Given one base
distribution function, say G(x), the transmuted distribution function F is defined by

F(x) = (1 + λ)G(x) − λ[G(x)]2, |λ| < 1. (2.1)

Aryal and Tsokos (2009) introduced the TGEV distribution and studied basic mathematical char-
acteristics just of the transmuted Gumbel distribution. However, it is important to study moments,
order statistics and other statistical properties in the modeling of extreme events because GEV dis-
tribution can occur with γ , 0. A random variable X is said to be TGEV distributed, say X ∼
FT ( · ; µ, σ, γ, λ) distribution, if its cdf can be expressed as

FT (x; µ, σ, γ, λ) =


e
{
−[w]−

1
γ

} [
(1 + λ) − λe

{
−[w]−

1
γ

}]
, γ , 0,

e−e−
(x−µ)
σ

[
(1 + λ) − λe−e−

(x−µ)
σ

]
, γ = 0,

(2.2)

by replacing (1.1) in (2.1). The function (2.2) is well defined for x such that {x : w = 1+γ((x − µ)/σ) >
0}, µ is a location parameter, σ is a scale parameter, γ is a shape parameter (tail index), and λ is the
shape parameter. Note that to λ < 0 the model (2.2) corresponds to a mixture of a GEV distribution
and a skew GEV distribution.

The probability density function (pdf) corresponding to (2.2) is given by

fT (x; µ, σ, γ, λ) =


[
(w)−

1
γ−1 1

σ
e
{
−[w]−

1
γ

}] [
(1 + λ) − 2λe

{
−[w]−

1
γ

}]
, γ , 0,

1
σ

e−
(x−µ)
σ e−e−

(x−µ)
σ

[
(1 + λ) − 2λe−e−

(x−µ)
σ

]
, γ = 0.

(2.3)

Figures 1–4 show how the TGEV density function is influenced by the parameter λ. Note that at λ = 0
we have the particular case of base GEV distribution. In the four figures µ = 0, σ = 1 are fixed and
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Figure 1: Plots for the transmuted generalized extreme value density µ = 0, σ = 1, γ = 0, and λ varying as shown
in the caption.
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Figure 2: Plots for the transmuted generalized extreme value density for µ = 0, σ = 1, γ = −0.5, and λ varying
as shown in the caption.

λ varies according to the values of the legend of the figures, but the tail index γ = 0,−0.5, 0.5, 0.5 in
Figures 1–4, respectively.

Note that the parameter λ can modify the distribution according to the signal of γ. For γ < 0,
the greater the absolute value of λ, the larger the maximum value of the pdf and the heavier its tail.
For negative values of λ, the density curves are larger than those for the positive values of λ. For
γ = 0, positive values of λ produce higher maximum values of the pdf. However, when γ > 0,
we have that the greater the value of λ, the larger the maximum value of the pdf and its tail will be
heavier. Extreme event data usually follows a heavy tail distribution and the GEV distribution has this
property for γ > 0. Therefore, the study the tail behavior of the TGEV density for γ > 0 is important
for modeling extreme events.

2.1. Tail behavior

By Embrechts et al. (1997) showed that a probability distribution is said to have a heavy tail if its
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Figure 3: Plots for the transmuted generalized extreme value density for µ = 0, σ = 1, γ = 0.5, and λ varying as
show in the caption.
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Figure 4: Plots for the transmuted generalized extreme value density for µ = 2, σ = 1, γ = 0.5, and λ varying as
show in the caption.

reliability function is regularly varying. Thus, in this section we analyze the tail behavior of the
TGEV distribution via regular variation property at infinity.

Definition 1. A positive measurable function f defined on some neighbourhood [xo,∞) is called reg-
ularly varying (at∞) with index α ∈ R if

lim
x→∞

f (tx)
f (t)

= xα. (2.4)

If α = 0 f is said to be slowly varying (at∞).
From Equation (2.4) it is easy to see that every regularly varying function f of index α has repre-

sentation

f (x) = xαL(x), (2.5)
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where L is some slowly varying function.

Proposition 1. Let X be a random variable with cdf FT ( · ; µ, σ, γ, λ), γ > 0, then

F̄T (x) = 2(1 + λ)x−
1
γ L1(x) + λx−

2
γ L2(x), x→ ∞, (2.6)

where F̄T = 1 − FT is the reliability function of the TGEV distribution and L1 and L2 are any two
slowly varying functions (at∞).

Proof: The tail behavior of a TGEV distribution at infinity is determined by considering the reliability
function of the GEV distribution as Ḡ = 1 −G and replacing it in (2.4). Therefore, we have

lim
x→∞

Ḡ(tx)
Ḡ(t)

= x−
1
γ ,

where Ḡ is regularly varying with index −1/γ. Thus, by (2.5), the reliability function G can be
represented by

Ḡ(x) = x−
1
γ L1(x), (2.7)

where L1(x) is slowly varying function (at ∞). We obtain (2.6) simply by replacing (2.7) in (2.1).
Then from Equation (2.6), we can conclude that the tail behavior of the TGEV distribution is the
same as that of a mixture of regular varying functions and, therefore, a mixture of heavy tail functions
whose right tail weight is influenced by the parameters γ and λ. �

2.2. Moments

The moments of a transmuted Gumbel random variable X ∼ FT ( · ; µ, σ, γ, λ) have already been ob-
tained by Aryal and Tsokos (2009). Therefore, in this section, we compute the moments of a random
variable X ∼ FT with γ , 0.

Proposition 2. If X ∼ FT ( · ; µ, σ, γ, λ) with γ , 0, then the kth moment (non-negative integer) of X
is given by

E
(
Xk

)
=

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ

)i [
Γ(1 − γi)

(
1 + λ − 2γiλ

)]
, (2.8)

where µ − σ/γ > 0.

Proof: For γ > 0, from (2.2) we obtain

E
(
Xk

)
=

∫ ∞

µ− σ
γ

xkdF(x)

=
(1 + λ)
σ

∫ ∞

µ− σ
γ

xk

(1 + γ (x − µ)
σ

)− 1
γ−1


e

{
−
[
1+γ (x−µ)

σ

]− 1
γ

} dx

− 2λ
σ

∫ ∞

µ− σ
γ

xk

(1 + γ (x − µ)
σ

)− 1
γ−1



e

{
−
[
1+γ (x−µ)

σ

]− 1
γ

}
2 dx. (2.9)
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In order to solve the integrals in (2.9), we first replace w by 1+ γ(x − µ)/σ and then use the Newton’s
formula,

xk =

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ
y
)i

,

then

E
(
Xk

)
=

(1 + λ)
σ

∫ ∞

0

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ
w
)i

w−
1
γ−1e−w−

1
γ σ

γ
dw

− 2λ
σ

∫ ∞

0

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ
w
)i

w−
1
γ−1e−2w−

1
γ σ

γ
dw

=
(1 + λ)
σ

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ

)i+1 ∫ ∞

0
wi− 1

γ−1e−w−
1
γ dw

− 2λ
σ

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ

)i+1 ∫ ∞

0
wi− 1

γ−1e−2w−
1
γ dw. (2.10)

Now, taking u = w−1 in (2.10), we have

E
(
Xk

)
=

 (1 + λ)
σ

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ

)i+1
 ∫ ∞

0
u−i+ 1

γ−1e−u
1
γ du

−
2λ
σ

k∑
i=0

Ci
k

(
µ − σ

γ

)k−i (
σ

γ

)i+1
 ∫ ∞

0
u−i+ 1

γ−1e−2u
1
γ du. (2.11)

Note that the integrals in (2.11) are Gamma functions, then (2.8) is obtained.
Analogously, we compute E(Xk) for γ < 0, where the integration domain in this case is [−∞, µ −

σ/γ], and we obtain the same result (2.8). �

The mean and variance of the TGEV distribution, also obtained by Nascimento et al. (2016), can
be deduced directly from Equation (2.8).

For k = 1,

E(X) =
(
µ − σ

γ

)
+

(
σ

γ

) [
Γ(1 − γ) (1 + λ − 2γλ)

]
and for k = 2,

E
(
X2

)
=

(
µ − σ

γ

)2

+ 2
(
µ − σ

γ

)
σ

γ

[
Γ(1 − γ) (1 + λ − 2γλ)

]
+

(
σ

γ

)2 [
Γ(1 − 2γ)

(
1 + λ − 22γλ

)]
,

then

Var(X) =
(
σ

γ

)2 [
Γ(1 − 2γ)

(
1 + λ − 22γλ

)
− Γ2(1 − γ) (1 + λ − 2γλ)2

]
.
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In the case of the transmuted Gumbel distribution, X ∼ FT ( · ; µ, σ, γ, λ), the moment generating
function of X, say M(t) = E(Xk), is of great importance to obtain moments of distribution, since a
general expression of E(Xk) is not simple to calculate.

Proposition 3. If X ∼ FT ( · ; µ, σ, 0, λ), then

MX(t) = E
(
etX

)
= etµΓ(1 − tσ)

[
(1 + λ) − 2tσλ

]
, t <

1
σ
. (2.12)

Proof: By definition,

MX(t) =
∫ ∞

−∞
etx e−

(x−µ)
σ e−e−

(x−µ)
σ

σ

[
(1 + λ) − 2λe−e−

(x−µ)
σ

]
dx. (2.13)

Setting u = e−(x−µ)/σ, we can rewrite (2.13) as

MX(t) =
∫ 0

∞
et(µ−σ log(u)) ue−u

σ

[
1 + λ − 2λe−u] −σ

u
du

=

∫ ∞

0
etµelog(u−tσ)e−u [

(1 + λ) − 2λe−u] du

= etµ
[
(1 + λ)

∫ ∞

0
u−tσe−udu − 2λ

∫ ∞

0
u−tσe−2udu

]
. (2.14)

The expression (2.12) is obtained by solving the integrals in (2.14), considering t < 1/σ and using
the Gamma function. �

The same expressions of E(X) and Var(X), obtained by Aryal and Tsokos (2009), we now obtain
with the first and second derivatives of MX(t) at t = 0,

E(X) = µ + σC − λσ log(2) (2.15)

Var(X) = σ2
[
π2

6
− λ(1 + λ) log2(2)

]
. (2.16)

However, the moment generating function (2.12) can also be useful for analyzing data on the sum
of TGEV random variables.

2.3. Reliability measures

If we consider a random variable T ∼ FT ( · ; µ, σ, 0, λ) with µ > 0 whose distribution support is
a subset of non-negative real numbers, T can represent the failure time of an event of interest. In
this sense, this random variable can be characterized by the survival function, R(t) = F̄T (t) = 1 −
FT (t; µ, σ, 0, λ), or by its hazard rate function, h(t) = fT (t)/R(t). The survival and hazard rate functions
for T are given, respectively, by

R(t) = 1 −
e

{
−
[
1+γ (t−µ)

σ

]− 1
γ

} 1 + λ − λe

{
−
[
1+γ (t−µ)

σ

]− 1
γ

}
 (2.17)
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Figure 5: Reliability function of TGEV distribution for µ = 2, σ = 1, γ = 0.5, and λ varying in [−1, 1].

and

h(t) =

(1 + γ (t−µ)
σ

)− 1
γ−1 e

−
[
1+γ (t−µ)

σ

]− 1
γ


σ


(1 + λ) − 2λe

{
−
[
1+γ (t−µ)

σ

]− 1
γ

}
1 −

e
{
−
[
1+γ (t−µ)

σ

]− 1
γ

} 1 + λ − λe

{
−
[
1+γ (t−µ)

σ

]− 1
γ

}


. (2.18)

Figure 5 shows the behavior of the reliability function (2.17) for λ taking values from −1 to 1.
Note that for smaller values of λ the function R decays more slowly, i.e., the parameters λ and γ
influence the tail weight of the TGEV distribution. This is illustrated by Proposition 1. Also notice
the hazard rate function (2.18), shown in Figure 6, presents unimodal behavior. We observe that the
mode changes as the parameter λ varies.

2.4. Order statistics

Let X(1), X(2), X(3), . . . , X(n) denote the order statistics of a random sample X1, X2, X3, . . . , Xn from a
population X ∼ FT ( · ; µ, σ, γ, λ). Then we have that the pdf of the jth order statistic X( j), for γ , 0, is
given by

fX( j) (x) =
n!

( j − 1)!(n − j)!


w− 1

γ−1 e−w−
1
γ

σ

 (1 + λ − 2λe−w−
1
γ
) (2.19)

×
[
e−w−

1
γ
(
1 + λ − λe−w−

1
γ
)] j−1 [

1 − e−w−
1
γ
(
1 + λ − λe−w−

1
γ
)]n− j

,

where w = 1 + γ(x − µ)/σ. Therefore, the pfd of the nth order statistic and the pdf of the 1st order
statistic are given, respectively, by

fX(n) (x) = n


w− 1

γ−1 e−w−
1
γ

σ

 (1 + λ − 2λe−w−
1
γ
) [e−w−

1
γ
(
1 + λ − λe−w−

1
γ
)]n−1

(2.20)
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Figure 6: Hazard rate function of transmuted generalized extreme value distribution for µ = 2, σ = 1, γ = 0.5,
and λ varying in [−1, 1].

and

fX(1) (x) = n


w− 1

γ−1 e−w−
1
γ

σ

 (1 + λ − 2λe−w−
1
γ
) [1 − e−w−

1
γ
(
1 + λ − λe−w−

1
γ
)]n−1

. (2.21)

For γ = 0, the pdfs of the jth, nth, and 1st order statistics are given, respectively, by

fX( j) (x) =
n!

( j−1)!(n− j)!
ve−v

σ

[
(1+λ)−2λe−v] [(1+λ − λe−v) j−1

] [
1 − (e−v(1 + λ − λe−v))

]n− j
, (2.22)

where v = e−(x−µ)/σ,

fX(n) (x) = n
ve−nv

σ

[
(1 + λ) − 2λe−v] [(1 + λ − λe−v)n−1

]
(2.23)

and

fX(1) (x) = n
ve−v

σ

[
(1 + λ) − 2λe−v] . (2.24)

3. Estimation and results

Nascimento et al. (2016) used Bayesian inference to obtain parameter estimators of the TGEV dis-
tribution. In this section we present the system to be solved to obtain the MLEs estimators, then
simulation experiments were run in order to test the performance of these estimators.

3.1. Estimation

The parameters of the TGEV distribution are estimated by the method of maximum likelihood. Let
X1, X2, . . . , Xn be a sample of size n from X ∼ FT ( · ; µ, σ, γ, λ). Let θ = (µ, σ, γ, λ) be the parametric
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vector. The log-likelihood function for θ with γ = 0 and γ , 0 can be expressed, respectively, as

l(θ) = −
n∑

i=1

[
log(σ) +

xi − µ
σ
+ e−

(xi−µ)
σ

]
+

n∑
i=1

log
(
1 + λ − 2λe−e−

(xi−µ)
σ

)
(3.1)

and

l(θ) = −n log(σ) −
(

1
γ
+ 1

) n∑
i=1

log
(
1 +

γ

σ
(xi − µ)

)
−

n∑
i=1

(
1 +

γ

σ
(xi − µ)

)− 1
γ

+

n∑
i=1

log

1 + λ − 2λe

{
−(1+ γ

σ (xi−µ))−
1
γ

} . (3.2)

Thus, for γ = 0, the MLEs of µ, σ, λ which maximize l(θ)), given by (3.1), must satisfy the
equations

∂l
∂µ
= n −

n∑
i=1

e−y + 2λ
n∑

i=1

e−ye−e−y

1 + λ − 2λe−e−y = 0,

∂l
∂σ
= −n +

n∑
i=1

(xi − µ)
[
1 − e−y] + 2λ

σ

n∑
i=1

(xi − µ)e−ye−e−y

1 + λ − 2λe−e−y = 0, (3.3)

∂l
∂λ
=

n∑
i=1

1 − 2e−e−y

1 + λ − 2λe−e−y = 0,

where y = (xi − µ)/σ and for γ , 0 the MLEs of µ, σ, µ, λ which maximize l(θ), given by (3.2), must
satisfy the equations

∂l
∂µ
=

n∑
i=1

1 + γ
σ + γ(xi − µ)

−
n∑

i=1

w−
1
γ−1

σ
+

n∑
i=1

w−
1
γ−12λe−w−

1
γ

σ
(
1 + λ − 2λe−w−

1
γ

) = 0,

∂l
∂σ
= − n

σ
+

n∑
i=1

(1 + γ)(xi − µ)
σ[σ + γ(xi − µ)]

−
n∑

i=1

(xi − µ)w−
1
γ−1

σ2 +

n∑
i=1

(xi − µ)w−
1
γ−12λe−w−

1
γ

σ2[1 + λ − 2λe−w−
1
γ ]
= 0,

∂l
∂γ
=

n∑
i=1

 log(w)
γ2 +

(
1
γ

)
(xi − µ)

σw

 − n∑
i=1

w−
1
γ

[
log(w)
γ2 − (xi − µ)

γσw

]

+

n∑
i=1

w−
1
γ

[
log(w)
γ2 − (xi − µ)

γσw

]  2λe−w−
1
γ

1 + λ − 2λe−w−
1
γ

 = 0,

∂l
∂λ
=

n∑
i=1

1 − 2e−w−
1
γ

1 + λ − 2λe−w−
1
γ

= 0, (3.4)

where w = 1 + (γ/σ)(xi − µ).

3.2. Simulation and results

In order to investigate the performance of the MLE θ̂ = (µ̂, σ̂, γ̂, λ̂) of θ = (µ, σ, γ, λ), random sam-
ples of size n = 500 and 1,000 of the random variable X ∼ FT ( · ; µ, σ, γ, λ) were simulated for 32
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Table 1: Parameters and mean estimates for γ > 0

θ n µ σ γ λ µ̂ σ̂ γ̂ λ̂

θ1
500 0 1 0.50 −0.50 0.001 1.026 0.508 −0.500

1000 0 1 0.50 −0.50 -0.025 1.006 0.504 −0.531

θ2
500 0 1 0.50 −0.90 0.229 1.111 0.506 −0.614

1000 0 1 0.50 −0.90 0.183 1.078 0.505 −0.681

θ3
500 0 1 0.50 0.50 −0.368 0.704 0.469 −0.269

1000 0 1 0.50 0.50 −0.388 0.697 0.462 −0.314

θ4
500 0 1 0.50 0.90 −0.427 0.597 0.322 −0.145

1000 0 1 0.50 0.90 −0.433 0.596 0.326 −0.140

θ5
500 0 1 0.75 −0.50 0.020 1.027 0.756 −0.481

1000 0 1 0.75 −0.50 0.003 1.023 0.754 −0.506

θ6
500 0 1 0.75 −0.90 0.187 1.117 0.754 −0.677

1000 0 1 0.75 −0.90 0.179 1.120 0.744 −0.701

θ7
500 0 1 0.75 0.50 −0.271 0.730 0.700 −0.111

1000 0 1 0.75 0.50 −0.306 0.685 0.681 −0.173

θ8
500 0 1 0.75 0.90 −0.391 0.533 0.507 −0.091

1000 0 1 0.75 0.90 −0.379 0.553 0.515 −0.063

θ9
500 0 1 0.90 −0.50 0.034 1.044 0.919 −0.451

1000 0 1 0.90 −0.50 0.002 1.011 0.908 −0.501

θ10
500 0 1 0.90 −0.90 0.184 1.135 0.897 −0.677

1000 0 1 0.90 −0.90 0.167 1.129 0.898 −0.701

θ11
500 0 1 0.90 0.50 −0.252 0.708 0.832 −0.084

1000 0 1 0.90 0.50 −0.270 0.692 0.832 −0.134

θ12
500 0 1 0.90 0.90 −0.330 0.556 0.643 0.021

1000 0 1 0.90 0.90 −0.314 0.576 0.650 0.084

θ13
500 0 1 1.00 −0.50 −0.023 0.981 1.014 −0.549

1000 0 1 1.00 −0.50 −0.004 1.011 1.013 −0.516

θ14
500 0 1 1.00 −0.90 0.149 1.126 1.004 −0.728

1000 0 1 1.00 −0.90 0.135 1.118 0.990 −0.751

θ15
500 0 1 1.00 0.50 −0.248 0.701 0.936 −0.094

1000 0 1 1.00 0.50 −0.235 0.707 0.918 −0.062

θ16
500 0 1 1.00 0.90 −0.329 0.529 0.720 0.021

1000 0 1 1.00 0.90 −0.352 0.511 0.719 −0.063

combinations of µ, σ, γ and λ. These parameters are presented in Tables 1 and 3 that can be seen in
two different configurations. In configuration 1, the values of the parametric vector corresponding to
γ > 0, µ = 0, σ = 1, and λ = −0.9,−0.5, 0.5, 0.9 are presented in Table 1. In configuration 2, the
values of the parametric vector corresponding to γ ≤ 0, µ = 0, σ = 1, and λ = −0.9,−0.5, 0.5, 0.9 are
seen in Table 1.

The procedure to investigate the performance of the MLEs consists of:

(1) Generating M = 100 random samples of size n = 500 and 1,000 from the TGEV distribution by
the method of inversion using the quantiles

xQ =



σ

{
−1 +

[
− ln

(
1+λ−
√

(1+λ)2−4λQ
2λ

)]−γ}
γ

+ µ, for γ , 0,

xQ = σ

− ln

− ln

1 + λ −
√

(1 + λ)2 − 4λQ
2λ


 + µ, for γ = 0.

(2) Obtaining the maximum likelihood estimates of the parameters µ, σ, γ, λ by maximizing the log-



The transmuted GEV distribution: properties and application 251

Table 2: Bias and MSE of θ̂ for γ > 0

θ n Bias MSE
µ̂ σ̂ γ̂ λ̂ µ̂ σ̂ γ̂ λ̂

θ1
500 −0.001 −0.026 −0.008 0.000 0.070 0.034 0.002 0.120

1000 0.025 −0.006 −0.004 0.031 0.046 0.015 0.001 0.085

θ2
500 −0.229 −0.111 −0.006 −0.286 0.121 0.058 0.002 0.165

1000 −0.183 −0.078 −0.005 −0.219 0.065 0.032 0.002 0.091

θ3
500 0.368 0.296 0.031 0.769 0.059 0.035 0.002 0.245

1000 0.388 0.303 0.038 0.814 0.056 0.032 0.002 0.251

θ4
500 0.427 0.403 0.178 1.045 0.032 0.019 0.003 0.216

1000 0.433 0.404 0.174 1.040 0.040 0.020 0.002 0.263

θ5
500 −0.020 −0.027 −0.006 −0.019 0.044 0.033 0.003 0.077

1000 −0.003 −0.023 −0.004 0.006 0.045 0.039 0.001 0.077

θ6
500 −0.187 −0.117 −0.004 −0.223 0.048 0.027 0.002 0.062

1000 −0.179 −0.120 0.006 −0.199 0.047 0.027 0.001 0.058

θ7
500 0.271 0.270 0.050 0.611 0.066 0.077 0.007 0.298

1000 0.306 0.315 0.069 0.673 0.047 0.050 0.004 0.238

θ8
500 0.391 0.467 0.243 0.991 0.023 0.020 0.006 0.195

1000 0.379 0.447 0.235 0.963 0.030 0.032 0.008 0.229

θ9
500 −0.034 −0.044 −0.019 −0.049 0.038 0.039 0.002 0.064

1000 −0.002 −0.011 −0.008 0.001 0.029 0.027 0.002 0.053

θ10
500 −0.184 −0.135 0.003 −0.223 0.036 0.027 0.003 0.049

1000 −0.167 −0.129 0.002 −0.199 0.047 0.036 0.001 0.060

θ11
500 0.252 0.292 0.068 0.584 0.052 0.075 0.010 0.290

1000 0.270 0.308 0.068 0.634 0.053 0.070 0.007 0.311

θ12
500 0.330 0.444 0.257 0.879 0.029 0.042 0.014 0.235

1000 0.314 0.424 0.250 0.816 0.031 0.046 0.015 0.263

θ13
500 0.023 0.019 −0.014 0.049 0.033 0.039 0.003 0.055

1000 0.004 −0.011 −0.013 0.016 0.039 0.068 0.004 0.061

θ14
500 −0.149 −0.126 −0.004 −0.172 0.037 0.033 0.003 0.047

1000 −0.135 −0.118 0.010 −0.149 0.030 0.023 0.002 0.036

θ15
500 0.248 0.299 0.064 0.594 0.050 0.089 0.013 0.306

1000 0.235 0.293 0.082 0.562 0.050 0.079 0.008 0.304

θ16
500 0.329 0.471 0.280 0.879 0.025 0.041 0.017 0.251

1000 0.352 0.489 0.281 0.963 0.030 0.047 0.015 0.254

likelihood function, (3.1) or (3.2), through of the “optim function” of the R Core Team software
2015. In this function the method for optimization is a derivative-free optimization routine called
the Nelder-Mead simplex algorithm. This method already provides the Hessian matrix.

Results about mean estimates of each parameter and their corresponding mean square errors
(MSEs) were calculated via Monte Carlo simulation with M = 100 samples of size n = 500 and
1,000. The results are presented in Tables 1–4.

In Section 2.2 we have that for γ > 0 the TGEV moments are defined in [1/2, 1], so the values
chosen for γ > 0 (Configuration 1) were 0.5, 0.75, 0.9, 1. Table 2 shows that the bias and MSE of the
mean estimates are small. The algorithm has obtained good estimates. In configuration 2, Table 4
shows estimates of the TGEV for γ ≤ 0. We have the convergence of the algorithm for γ in [−0.5, 0],
the bias is significant in some cases, but the MSE values are low.

Illustrations graphical of the fitted density f (x, θ̂) together the theoretical density f (x, θ) for several
cases of θ1 to θ32 are shown in Appendix in Figures A.1, A.2, and A.3. These figures also show that
the method yields satisfactory results.
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Table 3: Parameters and mean estimates for γ ≤ 0

θ n µ σ γ λ µ̂ σ̂ γ̂ λ̂

θ17
500 0 1 −0.10 0.50 −0.052 1.024 −0.105 −0.546

1000 0 1 −0.10 0.50 −0.165 1.047 −0.112 −0.700

θ18
500 0 1 −0.10 −0.90 0.164 0.992 −0.094 −0.673

1000 0 1 −0.10 −0.90 0.173 0.978 −0.101 −0.649

θ19
500 0 1 −0.10 0.50 −0.650 0.861 −0.051 −0.632

1000 0 1 −0.10 0.50 −0.691 0.867 −0.049 −0.691

θ20
500 0 1 −0.10 0.90 −0.757 0.763 −0.085 −0.598

1000 0 1 −0.10 0.90 −0.781 0.761 −0.083 −0.644

θ21
500 0 1 −0.25 −0.50 −0.110 1.059 −0.263 −0.625

1000 0 1 −0.25 −0.50 −0.150 1.066 −0.262 −0.668

θ22
500 0 1 −0.25 −0.90 0.156 0.966 −0.256 −0.652

1000 0 1 −0.25 −0.90 0.109 0.965 −0.245 −0.744

θ23
500 0 1 −0.25 0.50 −0.704 0.956 −0.179 −0.656

1000 0 1 −0.25 0.50 −0.784 0.980 −0.186 −0.771

θ24
500 0 1 −0.25 0.90 −0.791 0.850 −0.188 −0.579

1000 0 1 −0.25 0.90 −0.873 0.859 −0.184 −0.713

θ25
500 0 1 −0.50 −0.50 −0.217 1.142 −0.519 −0.748

1000 0 1 −0.50 −0.50 −0.210 1.140 −0.518 −0.743

θ26
500 0 1 −0.50 −0.90 0.140 0.941 −0.510 −0.663

1000 0 1 −0.50 −0.90 0.095 0.945 −0.497 −0.754

θ27
500 0 1 −0.50 0.50 −0.793 1.165 −0.411 −0.679

1000 0 1 −0.50 0.50 −0.754 1.135 −0.402 −0.639

θ28
500 0 1 −0.50 0.90 −0.957 1.045 −0.362 −0.680

1000 0 1 −0.50 0.90 −0.934 1.030 −0.356 −0.665

θ29
500 0 1 0.00 −0.50 0.440 1.187 0.000 0.135

1000 0 1 0.00 −0.50 0.412 1.170 0.000 0.098

θ30
500 0 1 0.00 −0.90 0.729 1.137 0.000 0.167

1000 0 1 0.00 −0.90 0.715 1.148 0.000 0.121

θ31
500 0 1 0.00 0.50 −0.084 0.962 0.000 0.340

1000 0 1 0.00 0.50 −0.095 0.963 0.000 0.324

θ32
500 0 1 0.00 0.90 −0.360 0.853 0.000 0.157

1000 0 1 0.00 0.90 −0.362 0.846 0.000 0.163

4. Application

In order to apply the model TGEV, we use three sets of real financial data: Ibovespa, S&P 500,
and Dow Jones. The data were obtained from the website http://br.investing.com/indices. For each
data set we use daily log-returns from June 3, 2006 to October 31, 2016. The log-returns are given
by rt = log(Pt) − log(Pt−1), where Pt is the opening price at day t. For the Ibovespa were used
2,707 observations, for the S&P 500 were 2,768 and for the Dow Jones 2,795. The data modeled
by the TGEV distribution correspond to the maximum values of the returns in blocks of size 7. The
histograms for these values are shown in Figure 7.

Table 5 shows the main descriptive statistics for the three data sets in question. The MLEs of
the parameters µ, σ, γ, λ are obtained from Equations (3.3) and (3.4). Table 6 shows the estimates
obtained for the three data sets.

Figures 8–10 present the histogram of the returns versus the fitted density for each data set, whose
parameters are shown in Table 6 along with QQplot that compares the theoretical quantiles on the
vertical axis with the empirical quantiles on the horizontal axis. From the results, we can observe that
the estimates of λ are different from zero. This indicates that TGEV distribution is more appropriate
for these databases than the GEV distribution often considered by many authors.
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Table 4: Bias and MSE of θ̂ for γ ≤ 0

θ n Bias MSE
µ̂ σ̂ γ̂ λ̂ µ̂ σ̂ γ̂ λ̂

θ17
500 0.052 −0.024 0.005 0.046 0.057 0.004 0.001 0.107

1000 0.165 −0.047 0.012 0.200 0.046 0.004 0.001 0.076

θ18
500 −0.164 0.008 −0.006 −0.227 0.077 0.007 0.004 0.168

1000 −0.173 0.022 0.001 −0.251 0.060 0.002 0.001 0.126

θ19
500 0.650 0.139 −0.049 1.132 0.039 0.002 0.001 0.096

1000 0.691 0.133 −0.051 1.191 0.027 0.002 0.000 0.071

θ20
500 0.757 0.237 −0.015 1.498 0.031 0.003 0.001 0.105

1000 0.781 0.239 −0.017 1.544 0.015 0.001 0.001 0.046

θ21
500 0.110 −0.059 0.013 0.125 0.058 0.007 0.001 0.096

1000 0.150 −0.066 0.012 0.168 0.049 0.006 0.000 0.083

θ22
500 −0.156 0.034 0.006 −0.248 0.070 0.010 0.001 0.128

1000 −0.109 0.035 −0.005 −0.156 0.035 0.005 0.001 0.071

θ23
500 0.704 0.044 −0.071 1.156 0.044 0.004 0.001 0.092

1000 0.784 0.020 −0.064 1.271 0.029 0.004 0.000 0.055

θ24
500 0.791 0.150 −0.062 1.479 0.031 0.003 0.002 0.079

1000 0.873 0.141 −0.066 1.613 0.016 0.002 0.001 0.032

θ25
500 0.217 −0.142 0.019 0.248 0.038 0.016 0.001 0.048

1000 0.210 −0.140 0.018 0.243 0.043 0.015 0.001 0.069

θ26
500 −0.140 0.059 0.010 −0.237 0.056 0.014 0.002 0.149

1000 −0.095 0.055 −0.003 −0.146 0.029 0.010 0.001 0.069

θ27
500 0.793 −0.165 −0.089 1.179 0.068 0.014 0.001 0.116

1000 0.754 −0.135 −0.098 1.139 0.068 0.011 0.001 0.114

θ28
500 0.957 −0.045 −0.138 1.580 0.030 0.008 0.001 0.049

1000 0.934 −0.030 −0.144 1.565 0.022 0.005 0.000 0.038

θ29
500 −0.440 −0.187 0.000 −0.635 0.200 0.041 0.000 0.393

1000 −0.412 −0.170 0.000 −0.598 0.191 0.036 0.000 0.390

θ30
500 −0.729 −0.137 0.000 −1.067 0.142 0.026 0.000 0.307

1000 −0.715 −0.148 0.000 −1.021 0.191 0.027 0.000 0.410

θ31
500 0.084 0.038 0.000 0.160 0.041 0.008 0.000 0.117

1000 0.095 0.037 0.000 0.176 0.043 0.007 0.000 0.135

θ32
500 0.360 0.147 0.000 0.743 0.139 0.022 0.000 0.581

1000 0.362 0.154 0.000 0.737 0.134 0.022 0.000 0.571

Figure 7: Histogram of maximums of blocks of size 7 of the returns.
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Table 5: Descriptive statistics of data

Index E(X) Var(X) max(X) min(X) median(X)
Ibovespa 0.0214 0.0002 0.1208 3 × 10−6 0.0186
S&P 500 0.0144 0.0001 0.1055 −7 × 10−4 0.0112

Dow Jones 0.0130 0.0001 0.0966 −0.0011 0.0099

Table 6: Parameter estimates

Index µ̂ σ̂ γ̂ λ̂

Ibovespa 0.02098 0.01500 0.28645 0.95497
S&P 500 0.01222 0.01080 0.43309 0.80260

Dow Jones 0.00782 0.00651 0.30470 0.14741

Table 7: Model selection

Dados Model log-likelihood AIC BIC

Bovespa GEV −1159.070 2326.141 2341.964
GEVT −1159.584 2327.168 2342.991

S&P500 GEV −1284.209 2576.417 2592.333
GEVT −1283.709 2575.418 2591.333

DowJones GEV −1336.870 2681.739 2697.695
GEVT −1336.921 2681.843 2697.799

AIC = Akaike information criteria; BIC = Bayesian information criteria; GEV = generalized extreme value.
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Figure 8: Fitted Ibovespa data by TGEV (left) and QQplot empirical versus theoretical (right). TGEV = trans-
muted generalized extreme value.

Analyzing the QQplots, we can see that the TGEV distribution fits very well as an estimated
distribution for the data used. The Kolmogorov-Smirnov (KS) test and the Anderson Darling (AD)
test were performed to verify the adjustment of the estimated distribution to the data. Both test the
following hypotheses:{

H0 : The data follow the TGEV distribution;
HA : The data does not follow the TGEV distribution.

Table 8 therefore presents the results for the KS test statistic and its p-value, as well as the AD test
statistic and its p-value.
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Figure 9: Fitted S&P 500 data by TGEV (left) and QQplot empirical versus theoretical (right).
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Figure 10: Fitted Dow Jones data by TGEV (left) and QQplot empirical versus theoretical (right).

Table 8: Hypothesis test result

Index KS p-valor AD p-valor
Ibovespa 0.03363 0.7752 0.4488 0.7993
S&P 500 0.03613 0.6810 0.5901 0.6573

Dow Jones 0.03558 0.6935 0.7058 0.5539

KS = Kolmogorov-Smirnov test; AD = Anderson Darling text.

It is possible to conclude from the KS and AD tests and the analysis of the p-values obtained
that there is no statistical evidence against the hypothesis that the data follow the TGEV distributions
estimated here.

5. Conclusion

In this paper, we present important properties of the TGEV distribution. TGEV distribution is a more
flexible model than GEV distribution to model extreme event data. The estimation of the parameters
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is approached by the maximum likelihood method. Applications of TGEV for three data sets show
that the new distribution can be used to effectively provide better adjustments than GEV distribution.

Appendix:

We added the Figures A.1.A.3 in order to illustrate the fit of the simulated data in Section 3. In almost
all cases, the adjusted densities were close to the theoretical densities.
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Figure A.1: Fitted density f (x, θ̂) (blue) and the theoretical density f (x, θ) (red) for θ1–θ4 and θ13–θ16, according
to Table 1.
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Figure A.2: Fitted density f (x, θ̂) (blue) and the theoretical density f (x, θ) (red) for θ17–θ20 and θ25–θ30, according
to Table 3.
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Figure A.3: Fitted density f (x, θ̂) (blue) and the theoretical density f (x, θ) (red) for θ10–θ14, according to Table 3.
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