• 제목/요약/키워드: properties of zero

검색결과 801건 처리시간 0.032초

Long-term Air Stability of Small Molecules passivated-Graphene Field Effect Transistors

  • Shin, Dong Heon;Kim, Yoon Jeong;Kim, Sang Jin;Moon, Byung Joon;Oh, Yelin;Ahn, Seokhoon;Bae, Sukang
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.237.1-237.1
    • /
    • 2016
  • Electrical properties of graphene-based field effect transistors (G-FETs) can be degraded in ambient conditions owing to physisorbed oxygen or water molecules on the graphene surface. Passivation technique is one of a fascinating strategy for fabrication of G-FETs, which allows to sustain electrical properties of graphene in the long term without disrupting its inherent properties: transparency, flexibility and thinness. Ironically, despite its importance in producing high performance graphene devices, this method has been much less studied compared to patterning or device fabrication processes. Here we report a novel surface passivation method by using atomically thin self-assembled alkane layers such as C18- NH2, C18-Br and C36 to prevent unintentional doping effects that can suppress the degradation of electrical properties. In each passivated device, we observe a shift in charge neutral point to near zero gate voltage and it maintains the device performance for 1 year. In addition, the fabricated PG-FETs on a plastic substrate with ion-gel gate dielectrics exhibit not only mechanical flexibility but also long-term stability in ambient conditions. Therefore, we believe that these highly transparent and ultra-thin passivation layers can become a promising candidate in a wide range of graphene based electronic applications.

  • PDF

CRITICAL BLOW-UP AND EXTINCTION EXPONENTS FOR NON-NEWTON POLYTROPIC FILTRATION EQUATION WITH SOURCE

  • Zhou, Jun;Mu, Chunlai
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1159-1173
    • /
    • 2009
  • This paper deals with the critical blow-up and extinction exponents for the non-Newton polytropic filtration equation. We reveals a fact that the equation admits two critical exponents $q_1,\;q_2\;{\in}\;(0,+{\infty})$) with $q_1\;{<}\;q_2$. In other words, when q belongs to different intervals (0, $q_1),\;(q_1,\;q_2),\;(q_2,+{\infty}$), the solution possesses complete different properties. More precisely speaking, as far as the blow-up exponent is concerned, the global existence case consists of the interval (0, $q_2$]. However, when q ${\in}\;(q_2,+{\infty}$), there exist both global solutions and blow-up solutions. As for the extinction exponent, the extinction case happens to the interval ($q_1,+{\infty}$), while for q ${\in}\;(0,\;q_1$), there exists a non-extinction bounded solution for any nonnegative initial datum. Moreover, when the critical case q = $q_1$ is concerned, the other parameter ${\lambda}$ will play an important role. In other words, when $\lambda$ belongs to different interval (0, ${\lambda}_1$) or (${\lambda}_1$,+${\infty}$), where ${\lambda}_1$ is the first eigenvalue of p-Laplacian equation with zero boundary value condition, the solution has completely different properties.

분자량 및 유변 특성에 따른 단일 중합체 폴리프로필렌의 발포체 변화 : (1) 회분식 공정 (Structural Changes of Homopolymer Polypropylene Foam with Molecular Weights and Rheological Properties : (1) In Batch Process)

  • 홍다윗;윤광중;이기윤
    • 폴리머
    • /
    • 제26권1호
    • /
    • pp.61-70
    • /
    • 2002
  • 단일 중합체 폴리프로필렌(PP) 수지가 가지는 분자량 특성과 유변 특성이, 회분식 가교 발포 공정을 통해 생산된 발포체 구조 변화에 미치는 영향을 연구하였다. 또한, 전자선 조사 가교가 PP 발포체에 미치는 영향도 연구하였다. 분자량 증가에 따른 저장 모듈러스(G'), 손실 모듈러스(G"), 제로 전단 점도($\eta_O$) 및 완화시간($\lambda$) 등의 유변 물성 값은 증가하였고, 이러한 유변 물성의 증가는 발포체 구조의 안정성에 직접적인 영향을 미쳤다. 전자선 조사량에 따른 PP의 겔분율은 3.2 Mrad의 전자선 조사량에서 크게 증가하며, 발포체의 안정성을 크게 향상시켰고, 그 이상의 전자선 조사량에서는 겔분율은 다시 감소하였고, 발포체 구조 또한 불안정해졌다.정해졌다.

R-plane Sapphire 기판에 수열합성법으로 제작된 ZnO 나노구조체의 성장 및 특성 (Hydrothermal Growth and Characterization of ZnO Nanostructures on R-plane Sapphire Substrates)

  • 조관식;김민수;임재영
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.605-611
    • /
    • 2012
  • ZnO nanostructures were grown on R-plane sapphire substrates with seed layers annealed at different temperatures ranging from 600 to $800^{\circ}C$. The properties of the ZnO nanostructures were investigated by scanning electron microscopy, high-resolution X-ray diffraction, UV-visible spectrophotometer, and photoluminescence. For the as-prepared seed layers, ZnO nanorods and ZnO nanosheets were observed. However, only ZnO nanorods were grown when the annealing temperature was above $700^{\circ}C$. The crystal qualities of the ZnO nanostructures were enhanced when the seed layers were annealed at $700^{\circ}C$. In addition, the full width at half maximum (FWHM) of near-band-edge emission (NBE) peak was decreased from 139 to 129 meV by increasing the annealing temperature to $700^{\circ}C$. However, the FWHM was slightly increased again by a further increase in the annealing temperature. Optical transmittance in the UV region was almost zero, while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanostructures was increased as the annealing temperature increased to $700^{\circ}C$. It is found that the optical properties as well as the structural properties of the rod-shaped ZnO nanostructures grown on R-plane sapphire substrates by hydrothermal method are improved when the seed layers are annealed at $700^{\circ}C$.

활성이온식각법에 의한 Y-Ba-Cu-O고온초전도 박막의 미세선 제작 (Patterning of Y-Ba-Cu-O thin films by rdactive ion etching(RIE))

  • 박종혁;한택상;김영환;최상삼
    • 한국재료학회지
    • /
    • 제3권2호
    • /
    • pp.151-157
    • /
    • 1993
  • In situ on-axis rf magnetron sputtering 방법으로 $Y_1$B$a_2$C${u_4}\;{_2O_x}$의 비화학 양론적인 타게트를 사용하여 $T_c$, $_{zero}$/-88.2K, ${\Delta}{T_c}$, <1.5K의 고온초전도 박막을 제조하고, 활성이온식각법으로 이 박막을 patterning하여 그 특성을 조사하였다. 제조된 패턴은 깨끗한 경계면을 가지고 있음이 관찰되었으며, 패턴 폭이 5${\mu}$m에서 2${\mu}$m로 좁아짐에 따라 임계온도와 임계전류밀도의 특성저하가 나타났으나, 그 저하폭이 크지 않아 소자로서 응용하기에 충분한 특성을 가지고 있음을 확인하였다. 한편 RIE방법에 의하여 미크론 이하의 선폭 제조가능성을 확인하였다.

  • PDF

LiF 및 TiO$_2$ 첨가에 따른 ZnWO$_4$의 고주파 유전특성 및 소결특성 (Effects of LiF and TiO$_2$ Additions on Microwave Dielectric and Sintering Properties of ZnWO$_4$)

  • 김용철;이경호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.131-134
    • /
    • 2003
  • [ $ZnWO_4$ ] shows excellent frequency selectivity due to its high quality factor($Q{\times}f$) at microwave frequencies. However, in order to use $ZnWO_4$ as multilayered wireless communication components, its other properties such as sintering temperature($1050^{\circ}C$), ${\tau}_f$ ($-70ppm/^{\circ}C$) and ${\varepsilon}_r(15.5)$ should be modified. In present study, $TiO_2$ and LiF were used to improve the microwave dielectric and sintering properties of $ZnWO_4$. $TiO_2$ additions to $ZnWO_4$ changed ${\tau}_f$ from negative to positive value, and also increased ${\varepsilon}_r$ due to its high ${\tau}_f$ ($+400ppm/^{\circ}C$) and ${\varepsilon}_r$(100). At 20 mol% $TiO_2$ addition, ${\tau}_f$ was controlled to near zero $ppm/^{\circ}C$ with ${\varepsilon}_r=19.4$ and $Q{\times}f=50000GHz$. However, the sintering temperature was still high to $1100^{\circ}C$. LiF addition to the $ZnWO_4+TiO_2$ mixture was greatly reduced the sintering temperature from $1100^{\circ}C$ to $850^{\circ}C$ due to liquid phase formation. Also LiF addition decreased the ${\tau}_f$ value due to its high negative ${\tau}_f$ value. Therefore, by controlling the $TiO_2$ and LiF amount, temperature stable LTCC material in the $ZnWO_4$-TiO_2-LiF$ system could be fabricated.

  • PDF

Micro-Brillouin Spectroscopy Applied to the Glass Transition of Anti-inflammatory Egonol

  • Kim, Tae-Hyun;Ko, Jae-Hyeon;Kwon, Eun-Mi;Jun, Jong-Gab
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.403-408
    • /
    • 2010
  • The acoustic properties of anti-inflammatory egonol were investigated by using micro-Brillouin scattering spectroscopy, by use of a 6-pass tandem Fabry-Perot interferometer and an optical microscope specially modified for spectroscopic purposes. The measured Brillouin spectrum was composed of a central peak centered at zero and a Brillouin doublet arising from the longitudinal acoustic waves, i.e. propagating density fluctuations. For the first time, the glass transition of egonol was identified to be about $5^{\circ}C$ at which the Brillouin peak position and the half width showed abrupt changes. The substantial damping of acoustic phonons of egonol near the glass transition temperature indicated that the contribution of internal relaxation processes such as small-amplitude librations of side chains to the damping of acoustic phonons may be substantial depending on the internal structure of molecules.

Modal Characteristics of Photonic Crystal Fibers

  • Lee, Yong-Jae;Song, Dae-Sung;Kim, Se-Heon;Huh, Jun;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제7권3호
    • /
    • pp.188-192
    • /
    • 2003
  • The modal characteristics of the photonic crystal fibers are analyzed using the reliable and efficient plane wave expansion method. The mode profile, effective index and group velocity dispersion are obtained by solving Maxwell's vector wave equations without any approximation. The zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths. Higher-order modes are also easily found as a by-product of the plane wave expansion method. This method can be used to quickly and accurately design various optical properties of photonic crystal fibers.

NMR Study of Effects of $MgCl_2$ on the Structural and Dynamical Properties of Yeast Phenylalanyl tRNA

  • Se Won Suh;Byong Seok Choi;Ki Hang Choi;Jin Young Park
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.517-520
    • /
    • 1992
  • Solvent exchange rates of selected protons were measured by NMR saturation recovery method for yeast $tRNA^{Phe}$, at temperature from 25 to $40^{\circ}C$, in the presence of 0.1 M NaCl and various low levels of added magnesium ion. The exchange rates in zero $Mg^{2+}$ concentration indicate early melting of acceptor stem, D stem, and tertiary structure. Addition of magnesium ion stabilizes the entire D stem more effectively than any other secondary or tertiary interactions.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.